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CHAPTER I

INTRODUCTION

The realizatien of machinr recognition of pictorial data has long

been a challenging goal, but has seldom been attempted with anything

more complex than alphabetic characters. In this thesis the task of

recognition of three dimensional objects from their optical images is

considered from the view of identifying and estimating the translation

and rotation of the object with respect to a given reference frame.

The approach presented here makes use of the theory of two-

dimensional moment invariants for planar geometric figures developed

by Ming-kue Hu (1]. Complete systems of moment invariants under trans-

lation, similitude and orthogonal transformations are derived. By

carefully utilizing these properties, a sample set is constructed in

which each sample is represented by a vector which characterizes the

image for a certain orientation of some object from the given group.

A pattern recognition technique is then described in which a parametric

representation of the input signal is employed. Tie decision process

using typical samrles partitions the space into regions that envelop

the chosen samples of a class. A simulation program based on the atove

outline is successfully developed which not only identifies objects,

but also determines their o-ientation and position in space.

1
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In this research three different objects, a F-4B PHANTOM I,

a MIRAGE III C, and a MIG 21 aircraft, were considered. The models of

these aircraft of scale 1 : 72 are mathematically represented by a

"wire model" structure [2] by considering a finite number of points,

called nodes, on the body of the model. These nodes are inter-

connected to approximate the curved and planar wirfaces on the body of

the aircraft by a number of straight lines. A simulation program

is used to generate the computational model of the silhouette of the

aircraft for any position and orientation in space. Certain invariant

properties of these images, as mentioned earlier, are used for the

construction of the sample sets. Different amounts of noise were

added to the points on the boundary of the simulated image to learn

about the performance of this method when using unfocused, hazy or

unclear optical images.

Besides the identification of aircraft, this approach can also

be used for various other problems. A television camera onboard a

docking space craft can take a picture of a docking target and thus

after estimating translation and rotation, the docking craft can

position itself for automatic docking. In addition, this approach can

help in developing a robot eve for use on automatic assembly lines in

industries.

A review of different pautern recognition techniques related to

this research appears in Chapter II. The problem formulation along

with a complete set of invariant moments is presented in Chapter III.

In Chapter IV, the computational results including the effect of noise



on parameter estimation are given. Conclusions, a summary of the

results, and future research areas are discussed in Chapter V.

Finally, Appendix I presents documentation of computer programs at

the end of the thesis.



CHAPTER II

SURVEY OF PREVIOUS WORK

2.1 Tntroduction

Munson (31 describes the pattern recognition proces4 in terms of

the following three stages where each is considered as an independent

component:

TRANSDUCER * PREPROCESSOR * CLASSIFIER.

However, considering the first step, "it is doubtful if recognition

occurs before the eyes are directed toward a (known) object, since

otherwise we would not bother to look at the object" (4]. Thus it i

would seem reasonable to use the raw data in the form of the image as i

bulk memory and allow the transducer to search for "regions of interest"

[5]. In considering the three stages, the literature overvhelmingly

concentrates on the various aspects of classification. It is here

that a substantial objection can be raised. !s not the more sig- .
nificant part of the problem that of characterizing the world by a set 7.

of properties that provide the desired discrimination? In fact

Selfridge [6] defines patterr recognition solely in terms of "the

extraction of signific&nt features from a background of irrelevant

detail."

Kazmierczak and Steinbuch [7] state that "the human visual system

4l



is capable of selecting features or criteria from a pattern where the

statement of the description would be independent of registration,

skew, size, contrast, deformation, or other noise effects." What is

needed according to Duda [8] are "rugged features". "A rugged feature

is one whose presence is not changed, and whose characteristics are

not greatly altered, by normal variations in the image of a character

in a given category." It is emphasized, and this is an important

point, that no general theory exists to allow us to choose what fca-

tures are relevant for a particular problem. With these comments in

mind, the object of the rest of the chapter is to present a discussion

of a few computer methods and algorithms used in conjunction with image

analysis.

2.2 Contour Tracin 8

3ne of the approaches to reduce the amount of data in a picture

involves scanning a picture and tracing a contour or outline of the

figure and then basing the recognition or classification decision en

this information f9]. It is well known [10], that "contours carry a

o4gnificant fraction of the information required for recognition of

image o-jects." Examples of this approach applied to character recog-

nition are discussed in the literature (11] - [13].

Hemami, McGhee and Gardner (14] in their paper presented an

algorithm which uses the information contained in the boundary of the

pattern by successively reading the coordinates of the boundary and

developing a nonlinear regression analysis technique for simultaneous

estimation of rotation and translation of the image objects. One of
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the advantages of using a contour description is that the latter is

independent of shape, translation, size and rotation (15).

2.3 Conic Section Approxim.tion

Here wA consider shepe description in terms of conic sections.

An individual pattern is defined as a non-negative function, f, on the

real. plane, subject to certain constraints on position, size. orien- --

tation, etc. In a given frame of reference any conic section may be

uniquely represented as

2 2
Q(x,y) * ax + 2hxy + by + 2gx + 2fy + c - 0, (2-1)

2 2 2 2 2
where a + 4h +b +4g + 4f + c -1 and the first non zero element

t 4t

of the vector ( a, 2h, b, 2g, 2f, c) is positive. Such a vector will

be referred to as a conic vector.

The true Euclidian distance from a point (u,v) to the nearest

point on the conic Q(x,y) - 0 is a troublesome quantity to evaluate,

and we use instead the quantity iQ(uv)l, which vanishes on and only on "

the conic and, loosely speaking, takes larger values for points (u,v)

further from the conic. The weighted squared discrepancy between the

pattern, P, and the conic may then be defined as

D - ffP(u,v) IQ(uv)12 du dv, (2-2)

and the "best" conic is that for which D is the least. This problem

may be formulated as an eigen value problem of order six, the conic

I-,Iii
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vector corresponding to the smallest root defining the best conic (161.

The best conic approximation has been used by Paton (161 as a

discriminator in chromosome analysis. An example of a best conic

approximation to a certain chromosome pattern is shown in Fig. 2.1.

bottern boundary best conic mnor axis

S D n o attern

I ~cenlir
0-oni

best conic-/ best conic I

MO)or axis

Figure 2.1 Line Drawing of a Chromosome Pattern and
its Best Conic Approximation

2.4 Shape Descriptors

Intuitively, it is preferable to describe an object using gross
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properties rather than local or neighborhood descriptors. Shape de-

scription is undoubtedly one of the most important aspects of pattern

recognition. It is desirable in many applications to describe the

structure of an object independently of orientation, translation or

even some types of distortion. Interesting discussions regarding

recognition of shape and their computer models can be found in papers

of Blum [17], [18].

Based on some shape description theories, an interesting shape

descriptoz referred to as a medial axis transformation (MAT) was

developed by Blum [18]. He describes the generating model which is

used to define MAT: " Consider a continuous isotropic plane that has

the following properties at each point: 1) excitation - each point

can have a value of 0 or 1, 2) propagation - each excited point excites

an adjacent point with a delay proportional to the distance, and 3)

refractory or dead time - once fixed, an excited point is not affected

by a second firing for some arbitrary interval of time. A visual

stimulus from which the contours or edges have been extracted impinges

on such a plane at some fixed time and excites the plane at those

points. This excitation spreads uniformly in all directions but in

such a way that the waves generated do not flow through each point."

The MAT is then defined as the locus of the corners in the wave-

front. The (propagating) contours have been likened to the front of

a grassfire ignited on the pattern boundary and the MAT is then the

locus of points where the fire is extinguished. Several examples of

MATs are shown in Fig. 2.2. Note ;hat, if the MAT turns out to be a

L
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- - I

- - - % N

Figure 2.2 Examples of MAT Transformation

N
N N N - - 7 N - -

I_ ~'~\

- I -\ \
/ I \

- II N
I N --N - -

- , N N
/ N .-~ N/

I /
I

I

Figure 2.3 The MAT for Both a Simple Sketch
and a DLstorted Version of a Man
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straight line, then the shape of the object under consideration is

symnetrical. The gross properties of the transformation are obviously "

related to the maci'cscopic and structural properties of the pattern.

This is demonstrated by Blum (18] using bvth a sketch-like represen-

tation of a human aad its distorted version as shown in Figure 2.3. t

The basic properties of the MAT -emain unchanged.

2.5 Moment Transformations

A set of two-dimensional moment invariants have been found by

Hu [1]. Based upon these moment invariants, a pattern-recognition

theory has been formulated which considers two patterns to be similar

if they differ at most in the following respects:

(A) Location

(B) Size

(C) Orientation

With the help of moment transformations, we can find a pattern fun-tion

as a number m - F(P) associated with each pattern, P, which is

(a) invariant under (A) to (C), i.e., it patterns P1 and P2

are similar according to (A) to (C) then F(P) - F(P2

(b) characteristic of dissimilar patterns, i.e., if patterns

P1 and P2 are not similar according to (A) to (C) than F(Pl) # F(P 2 );

(c) easy to compute.

If such a function cannot be found, then one might try to use ;.

several functions FI(P), F2 (P), ..., which satisfy (a) and (c), though

not (b), in the hope that for any given pair P1 and P2 of dissimilar

patterns, at least one of the functions Fi(P) would give Fi(P1 )OFi(P 2 ). I
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The latter is the approach we propose to follow.

2.5.1 Definition of Two Dimensional Moments

Let there be N points equally distributed along the boundary of

a certain pattern as shown in Figure 2.4.

Figure 2.4 Discrete Representation of the Boundary of a Pattern

Let the coordinates of these points be (xl,yl), (x2,y2), '-., (XN-yN).

Then the two dimensional (p+q)t order moments are defined as

lN

11

- j ~x i Y1i p + q =0,1,2.........(2-3)

I

6I
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IAlso let (x,y) be the centroid of the given pattern. Then,

N
N x I xi

or
-- Xi 2110 (2-4)--

Similarly

- 11"01 •(2-5)

2.5.2 Central Moments

The central moments are defined as

N
Upq- (x - () y - )q (2-6)

i-l

where

x-mlO , - (2-7)

It should be noted that u01 a ulO 0. Now, let us consider the effect

of translation on these central moments. Let

xi ' = xi + a (2-8)

Yi' = Y +  
(2-9)

1'

i[
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where a, 8 are constants. Then,

-~N

N

+ *1 0 + (2-10)

or

x + (2la

Similarly

y y +(2-12)

* * Using this new centroid of the pattern, let us aow calculate the new

* central moments under translation.

N

N

i-l

=Uq (2-13)

Thus the central moments are invariant under translation.
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From Eq. (2-6) it is quite easy to express central moments in

terms of ordinary moments. For the first three orders,

U0 0  O 1 (2-14)

U = uO 1 0 (2-15)

S(m)2 (2-16)u20 20 .10

U0 2  "02 - (m1)2 (2-17)

u a i -3m m +2(M 3 (2-18)(mlO) -
u30 = 3J -320m 10 10218

u i 2 1 -m 2 Om0  - 2m3113O + 2(m1o)
2i0 l (2-19)

u12 = i 12  'O210 - 2m11 m01 + 2(mO1)2mlO (2-20)

U 0 - m 03 - 2m lmOl + 2(m01)2 (2-21)

From here on, for simplicity of description, all moments referred to

are central moments and Upq will be simply expressed as:

N1 xjp yiq (2-22)
Upq N

i-II

I
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2.5.3 Similitude Moment Invariants

Under a similitude transformation, i.e., change of size, we

have

[:1 [ x H - constant (2-23)
y'0 y

Let us now calculate the new central moments uq after the transfor-

mation,

N
q N xi jt  Yi'4 (2-24)

; N
1 p ~p pq ~q

=yp~q 1

or

us yP+qPq pq

Therefore we have the following absolute similitude moment invariants:

!Uq

p = Upq , p + q = 2, 3, ... ( 2-26)

I

A
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Using similitude invariants of central moments, pattern identification

can easily be accomplished independently of translation and size.

2.5.4 Orientation Moment Invariants

Under the orthogonal transfo~uation of rotation,

x' - x cos 8 - y sin8 , (2-27)

y' - x sin 6 + y cos 6 (2-28)

Thus, the new momenut under rotation will be as follows:

pq1 L 2  t

N

1 ~(mcoe ysine)p (xsinO + -ca~

(2-29)

N

u 1 q .cs sn~ p (sn cs~

pq N xP yq (2-30)

It can be shown ill that the three second order moments 3atisfy the

following relations:

2Ull1' (u20 - u0 2) sin2O + 2u 1 clos2e , (2-31)

u 2 0 ' + u0 2 ' =u20 + u0 2  (2-32)

!*'
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.2 )2 O 2 2 (2-33)

( u20 - 0 2 ) + 4(u 1 1 ) (u2 0 - 0 2 ) + 4u

There are two ways of using Eqs. (2-31), (2-32) and (2-33) to accom-

plish pattern identification independently of orientation:

(,) The mwthod of -rincipal axes: if the angle 6 is deter-

mined fr; the equation (2-31) to make u 0, then we have,

tan 2e - - 2u1 1/(u20 - u02). (2-34)

The x', y' azet determined by any particular value of 0 satisfying

Eq. (2-34) are called principal axes of the pattern. With adicd re-

strictio,, such as u2 ' > U02' nd u,, > 0, e can be determined

uniquely. MLments detevinined vvith respret to such e pair of principal

.xes ot independent of crientation.

(B) The isethod of ort ogon31 moment itrvariants: the two

rl4tiooe Eqs. (2-32) and (2-33) are inveriant under rotation, and

they ctn be use* e.'_cectjy foc or intatiouniep adenL psttern identi-

fication. Let these two invariunt relations .-e called M1 and K2

respectively. The dtscriminattvu pryperty cxvi also be itcreased by

inc )iing higher-ordtr momeut invariants. For third-order moments, j
we ¢cn show tnat tha follcwing four expressions are invariant under

orvhogonal transformation.

M3  - (u3 0 - 3u 1 2 ) 2 + (3u21 0 3  (2-35)

3 (u3 u03
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M4  (u3 + u2 ) + (u2 + U 03 )2 (2.-36) ;

3u2  -+2
I M5  " (u30 -312) (u30 * u12) [(u30 + u12) 2 -3u1 + u03 ) 2

+ (u21 -u03) (u21 + Uo)3)'[3(u30 + u122- (u21 + u03)2

(2-37)

M6 -('20 -u02) ((u30 + u12) 2 -121 +u03)2

+ 4u"I (u30 + u12) (U21 + u0 3) (2-38)

Similarly, higher-order orthogonal moment invariants can be

derived. In fact, it has been found that the.re exists _ complete

system of infinitely many such invariants (i].

It is interesting to note that in the above methods, because

of complete orientation independence property, different patterns

which could be obtained from each other by just proper rotation, such

as '6' or '9' can not be distinguished. if the given pattern is of

circular or n-fold rotational symmetry, then the determination of 8 by

Eq. (2-34) breaks down. This is due to the fact that both numerator

and denominator are zero for such patterns.

2.6 Sample Set Construction and Linear Separatibility

Based on the features extracted from the optical image or the

pattern, one can form a sample set which characterizes classes from a

small number of their members. In addition to this, pattern recognition

techniques must perform a basic function of recognizing a nev input

U
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stimulus and classify it as a member of one of several classes.

Machine learning, the automatic accomplishment of classification, re-

quires partitioning the vector space into regions so that each region

should contain mostly members of a single class. The regions so con-

structed characterize the classes. The block diagram shown in Figure

2.5 illustrates a general pattern recognition system that exhibits the

functions discussed above [19]. The parameter extractor is used to

deciston
parometers closses

--

Figure 2.5 General Patten Recogition System

represent the machine's environment as a vector in an N-dimensional.

vector space. Machine learing is employed to determine, from

sample inputs, the best method of partitioning the space into differ-

ent decision regins, and the decision device, which implenents the

regions designed through machine learning, evaluates new input stimuli

and classifies them according to the region in which they are con-

tained.

repre ost of the machines used a sc linear, eplcyin only linear
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discriminants, i.e., correlations with stored reference vectors or

comparisons of weighted combinations of the parameters. Hyper-

planes are used to partition the space of measurable input parameters

to separate members of one stimulus class from those of another.

Combinations of these linear techniques vith logical rules, can con-

struct boundaries to quite complex distributions. In many practical

problems the classes are not linearly separable (not separable by

hyperplanes) and their members are not contained in diejointed simply-

connected regions of space of observable parameters. In these cases,

better decision rules than those provided by linear discriminants

should be used to minimize the probability of decision errors [l].

This is illustrated in Figure 2.6 where members of different classes

are contained in regions labeled A and B. These classes are linearly

separable in Figure 2.6a but not in the more complex distribution

shown in Figure 2.6b.

VI

boundory of decision region

I. ,.. 0 *,06 0
/ 0

*~ 0 J *AO *0/'o - e
of , 0/ o, o. "A.0. . io OOf_ "  - OA . ..

X.6 oSo ,  6.. . ' _ / £"A0, s0 
0 -/

10 0,/ - O/

__ _ _ _ __ _ _ _ __ _ _ _ _ __ _ _ _ __ _ _ _ _ V
I

ii(a) (b)

Figure 2.6 Different Distributions of Two Classes

I
0 -0- -I
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2.7 Recognition of Three-Dimensional Objects

The schemes developed by many authors for the recognition of a

solid object from its optical image require the perspective trans-

formation of a three-dimensional field, with hidden lines removed.

The perspective projection is used to fit the given picture. The

computer oriented techniques of forming perspective projection of a

given object are presented by Weiss [20], Comba [211 and Loutrel [221.

Guzman [23] and Winston (24] in their work in the field of

recognition of three dimensional objects developed a scheme which re-

cognizes the objects irrespective of their translations and rotations.

They consider a three-dimensional structure composed of bricks, wedges

and other simple objects. It is assumed in their work that a pre-

processing of some sort has taken place, and the picture to be analyzed

is available in a symbolic format of points, lines and surfaces. The

recognition scheme identifies the object from its picture by selecting

a combination of surfaces and relating it to an object.

The only two pattern recognition schemes in the literature, to

the author's knowledge, which deal with the estimation of three trans-

lations and three rotations associated with the object, are developed

by Roberts (251 and Advani [26). Roberts (25] in his work assumes

that the objects seen could be constructed out of some familiar parts,

called the models. The procedure atarts by first converting the pic-

ture into a line diagram; then the points in the line diagram which fit

a transformation of some model are found. This model has a set of

topological equivalent points. Finally the mean-square error
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minimization technique with some threshold is used to eliminate models

which fit the picture topologically, but do not fit exactly without

being deformed. This scheme does not yield the depth information but

relies on a supporr theorem for the purpose of estimating the depth .

or the translation along the optical axis of the camera. This theorem

requires the object in the scene to be supported by Uhe ground or

another object resting on the ground. This is one of the disadvantages

in Roberts' recognition algorithm.

Advani [26] developed an algorithm to estimate the three trans-

lations and three rotations of an object from its silhouette by the

use of regression analysis. Advani, in his work, synthesizes the sil- -

hot:ettc for r certain translation and rotation, and then tries to I
match this synthesized silhouette with the given cil'iouette of theS

object with unknown translation and rotation. Advani's method is

fairly accurate, even in the presence of large amounts of noise, but
t-

the main drawback of this algorithm is that it takes a much longer time

for recognition than what would be needed in many practical appli- -
cations. A new technique for recognition of three dimensional objects

is developed in this research which has the potential of reaching real f
time identification. I

I
I;



CHAPTER III

PROBLEM FORMULATION

3.1 Introduction

The problem which concerns us may be stated as follows: a

digital computer receives an optical image of a three-dimensional

object, and on the basis of this information it has to identify the

object and estimate its position and orientation in space.

It is assumed here that it is possible to obtain the silhouette

of the picture through some type of preprocessing of the optical image

[5]. On this silhouette a number of equally spaced data points are

generated and used for the calculation of moments. Using these

moments, as mentioned earlier, the computer should assign the image

to a certain object, and estimate the six parameters to be defined

later in section 3.4.

3.2 Transformation of the Real World

The first assumption here is that the picture is a view of the

real world recorded by a camera or other comparable device and there-

for' that the image is a perspective transformation of a three-

dimensional field. This transformation is a projection of each point

In the viewing space, toward n focal point, onto a plane. The trans-

formation depends on the camera used, the enlargement printing process,

23
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and, of course, the coordinate system the real world is referred to. 24

Let us fix the real world coordinates X, Y and Z by assuming that the

focal plane is the Y - -2f plane, that the focal point is at X - 0,

Y - -f, Z - 0, and the optical axis is colinear with the Y axis. In

order that the picture not be a reflection, we choose the focal plane

in front of the camera. Thus the focal plane is really the plane of

the print, not of the negative. Let U and V represent the coordinates

on the focal plane of the projections for the points in the real

world. This arrangement is shown in Figure 3.1.

Projection of point RXntInth

XiYiZi onPoint in the

real world
focal plane / (XiYi *Zi)

Focal point "Otoo,-o, Y
a xis)

fI I
Z,V

Figure 3.1 CaLera Transformation

Let (Xi, Y1, Zi) be a point in the viewing space and (Ui, Vj)

be its projection on the focal plane as shown in Figure 3.1 This

iA
II I III I III l e , -I
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transformation is shown below:

Ui - f • Xi , (3-1)
Yi +f

Vi = +f " Zi (3-2)

where, f, is the focal length of the camera.

3.3 Mathematical Representation of Three-Dimensional Objects

with the Wire Frame Structure

The mathematical representation of the three-dimensional object

is achieved by selecting a number of points, depending on the com-

plexity of the structure, on the body of the prototype model of a

given scale. These points are referred to as nodes. These nodes are

then appropriately interconnected to approximate the planar and curved

surfaces on the body of the object by a number of straight lines. This

results in a so called "wire-frame" structure (2], because the straight

lines could be considered as wires connected between the fixed points

(nodes) which form the frame. The connections between different nodes

can be mathematically expressed by a connection matrix in which each

row represents a certain node, and therefore the connection matrix has

the same number of rows as the nodes selected to construct the wire-

frame structure. The different column entries for each row in the

matrix show the nodes connected to the ona represented by the row. The

trailing zeroes in a row show that no more nodes are connected to the
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node represented by the row. One such example appears in Figure 3.2.

It is to be noted here that the nth row of the connection matrix,

represents the nth node of the object, shown in Figure 3.2.

Connection Matrix:
18

2 3 4 01
1 5 6 0
1 5 7 01
1 6 7 018 2 3 8 0,
2 4 8 0
3 4 8 0

65 6 7 0
2 10 12 13 0

1 9 11 13 0
10 12 13 0

3-- - -- ---------- 9 11 13 0
9 0 9 10 11 12

15 17 18 0
14 16 18 0
15 17 18 0
14 16 18 0

14 15 16 17

Figure 3.2 Wire Frame Structure and Connection Matrix
for a Winged Parallelepiped

3.4 Transformation Matrix 4

Let us fix a new coordinate system, xyz, to the center of gravity I 1
of the object to be identified. The coordinates of the nodes, selected

I
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on the body of the prototype of the object for the wire frame structure

representation, are measured with respect to this xyz coordinate

System. Let the M nodes, selected for a certain object to be identi-

fied, have the coordinates ((xi, Yi zi), i - 1, 2, ... , MI. At first,

let the three axes x, y and z of the coordinate system fixed to the

object be colinear with the respective axes, X, Y and Z of the real

world coordi.nates. This is shown by the transformation given below in

Eq. (3-3), which relates the coordinates xi, yi and zi of a node to the

real world coordinates Xi, Yi and Zi.

-:X i  xi

" Yi Yi 1 1,2, .. ,M. (3-3)
li Xi

The relative orientation of two arbitrary orthogonal systems can

be specified by a set of no fewer than three angles, usually called

Euler angles. Although the concept of the Euler angles is universally

used in several applications, there Is no agreement on the definition

of the Euler angles. There are a large number of possible choices for

the three angles required to define an Euler set of angles [27]. A

particular set of Euler angles is selected here with the aim of obtain-

ing moment invariance with one of the angles of the set. The trans-

formations for the set of Euler angles selected are shown in Figures

3.3 through 3.6. The symbolic representation used in these figures to

accomplish coordinate transformations is straightforward and is
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discussed in 128]. The three Euler angles e, * and * are called the

elevation, azimuth ar-d roll angles respectively.

x ' -z s n e" o

L1Z

y y

X' -z in 6 + x cos

Figure 3.3 Elevation "ngle Transforaation

Y . ._. 

.- _

x x Cos J + y' sin I .

y, -xV sin * + y' coo i -

LI ' Z I

Figure 3.4 Azimuth Angle Tran6formation

o.
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z" _"--- -- 0 "

Y Y"

y y"' cos * + z''sin

zt * -y11 sin + z'' cos *

F Figure 3.5 Roll Angle Transformation

YI

A 
Y

Figure 3.6 Symbolic Representation of the Euler Angle SequenceiI

The transformation matrix, which relates the coordinates of a

node with respect to the tu- different systems 
defined earlier, Is

LI
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as shown belaw:

Xi  Cos@ 0 asine cost -Rini* 3 r 1 0 0 xi

¥i 0 1 0 sin* COB* 4 0 COSO -sine Yi

Zi L-sine o cose 0 0 1 0 sin# costJ zi

for 1 1, 2, .oM (3-4)

After giving the above orientation to the xyz system, let us translate

the origin of this system to a point (A, B, C) with respect to the real

world coordinate system. The modified transformation is given below:

" 1 Jr
Xi  cose cost -cose sin cost cose sin* sine x i A

+ sine sin¢ + sine cost

Y sin* cosB cos -cos* sine Yi + B

-sine cost sine sin* cost -sine sin* n Zi  C

+ cose sine + cose cos€

for i - 1, 2, ... M N (3-5)

With the use of this transformation matrix, each node of the

wire frame structure can be represented in the XYZ coordinate system,

given the three translational and the three rotational parameters.

The projection of these M nodes can be obtained on the image plane and

used to construct the computational model of the silhouette [26). This

method of simulating the silhouette for a given set of six parameters I
is used later for the sample set construction.

-
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3.5 Moment invariance with Angle of Elevation

it will be shown here that the silhouettes obtained for different

values of the elevation angle, with the other parameters remaining the

same, are similar in size and shape but differ only in rotation. There-

fore the moment invariant functions dcrive4 in section 2.5.4 character-

ize this silhouette for the other given parameters.

It will be assumed that the optical axis of the camera is

directed to pass through the center of gravity of the object to be

identified, and thus the parameters A and C, defined earlier, will take

smaller values compared to the distance of the object along the optical

axis. This can be accomplished by using some kind of feedback system

which will change the direction of the optical axis so as to bring the

centroid of the silhouette to the origin of the UV coordinate system.

The projection of a certain point in the viewing space onto the

focal plane is given by the following transformation

f
Ui f + Yi Xi , (3-6)

Vi f Zi (3-7)
i

where (Ui, Vi) are the coordinates of the projected point in the focal

plane. With the assumption that tI-e parameters A and C are small in

Eq. (3-5), we have the following relations:
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Y, - (sin*)xi + (cos* cos*)y1 + (-coso* sin)z i + B (3-8) Ij

Xi - cosO(cos*)xi + (-cose sin* coso + sine sin*)yi
+ (cos6 sin* sin$ + sin$ cosO)z i  (3-9)

2, -- sine(cos*)xi + (sine sin* Cos$ + cose sin#)yj

+ (-sinO sin* sin4 + cos eos*)z i  (3-10)

It is interesting to note here that Y is not a function of the

elevalion angle 8 and hence remains the same for all values of S,

given the parameters 4, * and B. Thus the factor K a f/(f + Yi) in

Eqs, (3-6) and (3-7) remains constant with 8, for the given values of

,, * and B. Therefore ye have

U i  , (3-11)

V1  * K i (3-12)

where K is a constant. It can further be shown that the expression

(X 2 + Z2) is also not a function of the elevation angle 0, given the

assumption A - C - 0. Using Eqs. (3-9) and (3-10), we have

X i 2 Cos2, x 2 + (sin2 10 cos 2 . sin2Oyt2

+ (cos2* + sin24 sin2 )zi2  (3-13)

1'
Ie
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Therefore, using this result along with Eqs. (3-11) and (3-12), we

have

u i2 + Vi2  
* K2 (XI2 + Z)

- f(,, *, B) (3-14)

This shows that when the elevation angle of a certain object is

changed, the locus of the projection of each node of the object onto

the focal plane is a circle with the center as the origin. Thus we

can in effect say that the result of varying the elevation angle of a

certain object, on its silhouette, is just its rotation in the focal

*plane, with no change in size and shape. Perspective projections with

different elevation angles, but with the same azimuth angle, roll

angle and distance along optical axis, appear in Figure 3.7. The

moment functions Ml, M2, 213, N4, H5 and M6 derived earlier in section

2.5.4 are therefore invariant with the elevation angle e.

H u20 + u02(3-15)

*1 M -2 2 (-6
2 (u20 -u 02) + 4ul

2  (3-16)

43 - (u30 - 3u1 2 )
2 + (3u21 - u03)

2  (3-17)

M4 " (u30 + u1 2)
2 + (u21 + u3)2 (3-18)

4 (u30 03
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I L
(a)L 5 75 6 55 B 70f., A C

-
0

(b) i - 5-, b - 750, 6 - 530, B - 7000 ft., A - C - 0

Figure 3.7 Perspective Projections for Different Elevation Angles
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M5  " (u30 - 3ul 2) (u30 + U21 ) (Cu30 + u12)
2 - 3(u2 1 + u03

)2

+ (3u2 1 - u0 3) (u21 + u03) [3(u 30 + u12 )
2 - (u2 1 + u03)2]

(3-19)

M6 - (u20 - u02 ) (Cu30 + u12)
2 - (u21 + u0 3

)21

+4ull(u 30 + u1 2) (u21 + u03) (3-20)

3.6 Moment Invariance with Distance along Optical Axis

It is clear that as an object is moved along the optical axis,

the first order effect on the image is just a change in size. The

second order effect is that a few small portione of the image may

appear or disappear when the object is moved along the optical axis.

This second order effect diminishes as the distance of the object from

the camera increases.

The radius of gyration, r, of a planar pattern is definee as

follows:

- (u20 + u0 2 ) (3-21)

The radius of gyration is directly prouortional to the size of the

image or inversely proportional to the distance of the object along

the optical axis. The size of the image here is defined as the mini-

mum radius of a circle required to enclose the given image completely
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with its center at the centroid of the iage. Thus the product RK of"

the radius of gyration of the image and the distance along the optical

axis of the object is a constant.

RK - (u20 + u02)1 1 B (3-22)

Therefore the radius of gyration, r, should be used to normalize the

moment functions of Eqs. (3-15) through (3-20) to obtain the similitude

moment invariance. Using the results derived in section 2.5.3 con-

cerning similitude moment Invariants, we have the following moment

functions invariant with the elevation angle e and the distance B along

the optical axis:

1 2 ~ 2 (-3
"d2 , =1__ [(u20 _ u0 2) + 4u 1 1  (3-23)

r

m3, - 1 [(u30 - 3u12 )
2 + (3u12 - u03 )

2 ] (3-24)6
r

M4 - [(u3 0 + u12)
2 + {u2 1 + u0 3 )2 1 (3-25)

r

M51 r (u30 - 3u12) (u30 + u2 1 ) [{u 30 + u12)
2 

- 3(u21 + u0 3)2

+ (3u21 - u03) (u2l  0 3  30  12  21 + 3

(3-26)

L



37

M61 L 1110 '02)04 + u ) (u + )2l
r- 8 ((20 - u0 2) 130 12 21 '03j

+ 4u 1 1 (u 30 + u12 ) (u21 + u03 )J (3-27)

3.7 Elevation Bias Error

Let us consider a silhouette of an aircraft for a certain

orientation as shown in Figure 3.8. Let this pattern have a principal

axis as shown in the figure. This principal axis iG the same as the

perspective projection of the x axis of the coordinate system fixed

to the ceter of gravity of the object or the aircraft in the present

case. Therefore the inclination of this principal axis of the pattern

with the U axis in the projection plane is the elevation angle e. The

positive direction of e is shown in the figure.

~Eihpse ted t te patern

II

Major axis of the ellipse

O--Inclination of principal oxis

L Principal axis of the pattern 9Inclination of major axisLne Elevation bias error

Figure 3.8 Elevation Bias Error for a Pattern
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The inclination e of the major axis of the ellipse fitted to I

the pat.ern can be found from Eq. (2-34), as shown below

tan 26 - 2Ull/(u20 - u02 ) (3-28)

with added restriction, such as u2 0 ' > u 0 2 ' and u30' > 0, 86 can be

determined uniquely from Eq. (3-28). 1
The elevation bias error, 0., for a pattern am seen from Figure

3.8, is defined as the difference between the elevation angle 0 and

the inclination 6m of the major axis of the ellipse fitted to the

pattern. Z

e  * 0 -6 m (3-29)

K~I]

It is interesting to note here again that as the elevation angle is

changed, the silhouette of the object just rotates in the projection Ij
plane and thus the elevation bias error, e., remains constant for

certain given values of the azimuth angle *, the roll angle * and the

distance B along the optical axis. Since the first order effect on the

silhouette, when moving the object along the optical axis is just a

change in size, we can say that the elevation bias error is nearly I j
invariant with the distance B along the optical axis.

3.8 Sample Set Construction

In sections 3.5 and 3.6, we have derived five different fun- l

ctions of moments of the planar pattern, which are invariant with the
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elevation angle 9 and the distance B along the optical axis of the

object to be identified, Thus, these five functions of moments can

be used to provide a parametric representation of the silhouette of

the object for given values of the azimuth and roll angles in a five-

dimensional vector space. The moment functions M2 , M3 , M4 , M5 and M6

of Eqs. (3-23) through (3-27) are of different orders. Invariant

moment functions of the same order should be used for the parametric

representation of the silhouette in order to give equal weight or

the same importance to each parameter used in the recognition pro-

cedure. Therefore, let

P1 - M2' (3-30)

02 u (3)4 /6  (3-31)

P3 = (M4 ) 4 / 6  (3-32)

P4 - (H5') 4/12  (3-33)

05 - (M6 ) 4/8  (3-34)

and then, the vector -(P' 029 03' PV p5) represents the given sil-

houette in a five dimensional vector space.

A simulation program for obtaining the silhouette of a given

object for any translation and orientation [26] is used here for con-

struction of the s:.:ple set. The. possible range of variations of the

azimuth angle L and the roll angle are discretized; and then fat all



40

of the different combination* of these discretized values of the two

angles with the values of A and C taken as zero, silhouettes are

generated from which the parameters 0l, 029 03* 04, 05, the constant

RK, and the elevation bias error Be are computed. Thus a sample set

is constructed for a certain object and then repeated the same way

for the other objects to be identified.

3.9 Nearest Neighbor Rule for the Identification
and Estimation of thz Parameters

Let the vector pi represent the ith pattern in a five dimensional

vector space from the sample set (19 n 1
) ....... , (pn, nn) where the

ni's take values in the set kl, 2, ..., V 3. Each ni is considered

to be the index of the category to which the ith individual belongs,

and each Pi is the outcome o' the set of measurements made upon that

individual pattern. For brevity, we can say '5i belongs to hi" when

we precisely mean that the ith individual, upon which measurements pi

have been made, belongs to category ni .

A new pair (p, n) is given, where only the measurewent p is

raade, and it is desired to estimate n by utilizing the information con-

tained in the sample set of correctly classified vectors. We shall

call

a nearest neighbor [29] to P if

min d(oi, 0) - d(+', o) i-1,2, ... u. (3-35)

_L_
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The unknown input , by the nearest neighbor rule, belongs to

the category or the class n' of its nearest neighbor 0' defined in

Eq. (3-35). A mistake is made when n' 0 n. Tnearwst-neixoor-rule-

described here utilizes only the classification of the nearest neigh-

bor. The remaining n-l classifications are ignored.

The computations involved in this approach are fairly simple.

An alternative approach using linear separatibility of the sample set

into different classes could possibly be used for the identification,

but then the computations involved would be more complex and difiicult.

3.10 Summary

In this chapter we first considered the mathematical repre-

sentation of the object to be identified and of the optical system.

Some functions of noments which are invariant with the elevation angle

o and the distance B along the optical axis were used to characterize

the silhouette for the given values of the azimth angle ' and the

roll angle *. A procedure was then described to form the sample set;

then using this sample set a nearest neighbor rule useful for the

identification and the estimation of the parameters of the unknown

object -7as discussed.
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CHAPTER IV

COMPUTATIONAL RESULTS

4.1 Introduction

Wire Frame structure representation of three different aircraft,

a F-4B Phantom II, a Mirage IIIC, and a MIG 21 is presented in this

chopter. The moment functionG whic ' are invariant with the elevaticn

angle and the distance along the optical axis, derived in Chipter III,

are then analyzed. Using the parametric xepresentation of tiLe si)-

houettes generated, the co-structioa of the Paxmple sit for the three

aircraft considered is shown. Thc' results obtained by the aplication

of the nearest neighbor rule described in Chapter Ily for the idesiti-

fication and estimation of parameters 're presented later in this

chapter. The effect of noise on identification and estimation is also

studied.

4.2 Wire Frame Structure Representation

Prototype models of scale 1:72 are used for the purpose of

obtaining the wire frame structure representation of the three differ-

ent aircraft considered. A Uumber of points called nodes are selected

on the body of the prototypc 'o represer.t the three dimensional objects,

or the aircraft, in the present case. The number of nodes requtred and

their positions on the body of the prototype for a complete and fair

representation of the three dimensional object depends on the object's

42
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complexity. It is obvious that the number of nodes necessary to

repre..ent a curved surface would be more than that necessary to rep-

resent a planar surface. The computation time required to generate

the silhouette for a certain given translation and rotation increases

more than linearly with the number of nodes selected.

The coordinates of the 79 nodes selected on the Phantom F-4B

aircraft, with respect to the center of gzavity of the aircraft, appear

in Table I. The connection matrix for these nodes selected is given

T in Table II.

TABLE 1

COORDINATES OF THE NODES FOR THE PHANTOM AIRCRAFT
(With Respect to Its Center of Gravity and in Feet)

Node x y z

1 4.46 -1 .37 5.21
2 4.46 1.37 5.21

3 26,04 -2.03 -0.92
4 26.04 2.03 -J.92

5 26.04 -2.03 1.33
6 26.04 2.03 1 .33
7 18.32 -2.96 -2.20
8 10 .32 2.96 -2.20
9 18.32 -3.75 -2.01

10 18 .32 3.75 -2.,01
12 17.85 -3.75 2.06

12 17 .85 3.75 2.06
13 17.61 -2.59 2.49
14 17.61 2.59 5.49

15 10.28 -2.44 -2.49
16 10.2e 2.44 -2.49
1 10.28 -4.29 -1 .67
18 10.28 4.29 -1.67
19 13.21 -4.53 1.83
20 13.21 4.53 1 .83
21 3.50 -4.53 1.d3
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TABLE 1--Continued

Node x y z

22 3.50 4..) 1.83
23 3. , -4.53 3.03
24 3.50 4.53 3.03
25 -1.32 -4.29 -1.20
26 -1 .32 4.29 -1.20
27 -5.28 -4 .53 2.52
28 -5.28 4.53 2.52
29 -1.44 -12.56 2.67
30 -1 .44 12.56 2.67
31 -1.44 -12.56 3.27

32 -1.44 12.56 3.27
33 3.56 -12.56 2.48
34 3.56 12.56 2.48
35 -6.45 -12 .56 2.85
36 -6.45 12.56 2.85
37 -4.22 -19,51 1.64
38 -4.22 19.51 1.64

39 -7.63 -19.51 1.64
40 -7.63 19.51 1.64
41 -6.66 -3.30 -2 .41
42 -6.66 3.30 -2.41
43 -9'.47 -3.52 -0.64
44 -9.47 3.52 -0.64

45 -9.04 -4.26 u.17
46 -9.04 4.26 0.17
47 -9.04 -3.78 3.02
48 -9.04 3.78 3.02
49 -14.89 -2.27 -2.15
50 -14.89 2 .27 -2.15
51 -19.36 -1.89 -2.43
52 -19.36 1 .69 -2.43
53 -19.36 -1.89 -1 .83
54 -19.36 1 .89 -1.83
55 -22.66 -) .47 -1.80
56 -22.66 1.47 -1.80
57 -20.98 -11 .50 -1.10
58 -20.98 11 .50 -1 .10
59 -22.90 -11.50 -1.10

60 -22.90 11.50 -1.10
61 -14.69 -0.60 -3.98

62 -14.69 0.60 -3.98
63 34.43 O.O 1.04
64 2b.OG 0.00 -1 .b2
65 26.04 O.OC 2.49

I

."

*
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TABLE I--Continued

Node x y

t6 22.3t 0.0c -3.72
67 18.04 0.00 -4.50
6B 13.21 0.00 2.49
69 -13.21 0.00 -5.vp
70 -6 .66 0.00 -3 .98
71 -22 .97 0.0C -3.10
72 -18 .52 0.00 -9.58
73 -22.78 u.00 -9.75
74 -23.48 U.U0 -2.28
75 -9.04 0.0G 2.4976 10 .70 0 .00 2.49
77 14.87 0.00 4.44
76 -5 .99 0.00 4.44
79 4 7 0.0C 2.49

TABLE 2

CONNECTION MATRIX FOR THE PHANTOM AIRCRAFT

Node Nodes Connected To

1 76 79 77 78 0 0 0

2 76 79 77 78 0 0 0

3 63 64 66 7 0 04 6 3 64 6 66 8 0 05 t 3 65 3 13 0 0 0
6 63 65 4 14 0 0 C7 69 15 66 9 3 13 0
8 69 16 66 10 4 14 09 7 11 17 19 0 0 010 8 12 le 20 0 0 0

11 9 13 19 0 0 0 012 10 14 20 0 0 0 3!3 7 11 5 65 0 0 C
14 8 12 6 68 0 C 015 17 7 69 41 25 016 18 8 69 42 26 0
17 15 19 9 25 21 3
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TABLE 2--Continued

Node Nodes Connected To

18 16 20 10 26 22 0 3
19 I 17 21 23 33 9 0
20 12 18 22 24 34 10 0
21 17 19 27 29 0 0 3
22 18 20 28 30 0 0 0
23 19 27 31 0 0 0 024 20 28 32 0 0 0 3
25 is 17 41 43 45 27 0
26 16 18 42 44 46 28 0
27 21 23 35 25 47 0 3
28 22 24 36 26 48 0 0
29 21 33 35 37 0 0 0
3 22 34 36 38 0 0 3

31 33 35 23 39 0 0 0
32 34 36 24 40 0 0 0
33 29 31 19 37 0 0 3
34 30 32 20 38 0 0 0
35 29 31 39 27 0 0 0
36 30 32 40 28 0 0 0
37 33 39 29 0 0 0 0
38 34 40 30 0 0 0 03, 37 35 31 0 0 0 0
40 38 36 32 0 0 0 0
4: 70 15 49 25 43 0 0
42 70 16 50 26 44 0 0
43 41 25 45 47 49 75 74
44 42 26 46 48 50 75 74
45 25 43 47 0 0 0 0
46 26 44 48 0 0 0 0
47 27 43 45 74 75 0 0
48 28 44 45 74 75 0 0
49 41 61 51 53 43 57 0
50 42 62 52 54 44 58 0
51 49 55 57 71 0 0 9
52 50 56 58 71 0 0 0
53 49 55 59 75 0 0 0
54 50 56 6C 75 0 0 0
55 51 53 59 0 0 0 056 52 54 X6 C 0 0 0 C
57 59 49 51 0 0 0 0

5B60 50 52 0 0 0 0
59 57 55 53 0 0 _, 0

L
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TABLE 2--Continued

Node Nodes Connected To

b0 58 56 54 0
61 70 71 72 49 0 0 r)l

62 70 71 72 5C G 0 0
63 64 3 4 5 6 ()5 0
64 63 66 3 4 0 C 0

b5 63 5 6 6R G C D
66 64 67 7 8 3 4 0
67 66 69 0 0 0 C. 0
68 65 76 13 14 0 0 3
69 67 70 7 F 15 16 0
70 69 2 61 62 41 42 0
71 73 74 61 62 51 52 C
72 70 73 61 62 0 0 0
73 72 71 C C 0 C 0
74 71 47 48 43 44 C C
75 76 47 48 43 44 53 54

76 77 78 1 2 b8 75 %

77 76 79 1 2 0 3 G
78 76 79 1 2 C 0
79 77 78 1 2 0 0

The trailing zeroes in the rows of the connection matrix of

Table II show that no more nodes are connected to the node representing

that row. For example, node 77 i7 only connected to the nodes 76, 79,

I and 2.

Similar measurements were made for nodes selected for the other

two aircraft. The body of the Mirage is less -nmplex in shape than

those of the Phantom and MIG aircraft, and therefore it is only nec-

essary to select 59 nodes for the Mirage. The coordinates of the nodes

and their connection matrix for the Mirage and MIC aircraft appear he-

low in Tables IIl throu.h VI.
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TABLE 3

COORDINATES OF THE NODES FOR THE MIRAGE AIRCRAFT

(With Respect to Its Center of Gravity and in Feet) I
Node x y z I

I 23.4E 0.15 -0.02
2 23.48 -0.15 -0.02
3 18. 2 1.56 -0.02
4 18.62 -1.56 -0.02
5 12.80 1.5C -3.95 T
6 12.80 -1.50 -0.95
7 12.80 2.76 -0.29
8 12.80 -2.76 -0.29
9 12.80 2.76 1.12

10 12.80 -2.76 1.12
11 12.80 1.50 1.51
12 12.80 -1.50 1.51
13 5.30 1.14 -1.76
14 5.30 -1.14 -1.76
15 6.11 2.73 -0.68
16 6.11 -2.73 -0.08
17 6.71 3.39 1.57
18 6.71 -3.39 1.57
19 -2.17 0.90 -1.58
20 -2.17 -0.90 -1.58
21 -2.59 1.74 -1.04
22 -2.59 -1.74 -1.07
23 -4.51 2.52 2.38 --

24 -4.51 -2.52 2.38
25 -10.42 12.63 3.25
26 -10.42 -12.63 3.25

27 -4.51 2.52 2.74
28 -4.51 -2.52 2.74 _

29 -11.11 0.33 -1.34
30 -11.11 -0.33 -1.34
31 -10.60 1.89 -0.23
32 -10.60 -1.89 -0.23
33 -13.18 3.09 2.38
34 -13.18 -3.09 2.38
35 -12.49 12.63 3.25
36 -12.49 -12.63 3
37 -16.93 1.62 1,.,

38 -16.93 -1.b2 1.61
39 -16.93 0.39 -0.71
40 -1.93 -0.39 - .71
41 -23.i7 1.8 0.79
42 -20 .17 -1.83 0.79 1

T
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TABLE 3--Continued

Node x v z

43 -20.17 1 .23 1.8144 -20.17 -1 .23 1.81

45 29.03 3 .00 -0.02
46 23.48 0.00 -0.47
4,7 23.48 0.00 -0.17
48 18.62 0.00 -1.34
49 18.62 O.O 1.39
50 14.66 3.00 -2 .93
51 12.8C 0.0 C 1.93
T 52 10.76 0.00 -i.7253 5.30 0 .00 -2 .39

54 -1.72 0.00 -1.97
55 -7.66 0.00 -2.69
56 -17.89 0.00 -7.19
57 -21 .07 0.00 -7.19
58 -18.52 0.00 -1.37
59 -21.46 0.00 -1.07

TABLE 4

CONNECTION MATRIX FOR THE MIRAGE AIRCRAFT

Node Nodes Connected To

1 45 46 4.7 3 0 0 32 45 6 47 4 o o o3 48 49 1 5 11 C 0

4 48 49 2 6 12 0 3
5 50 52 3 7 11 13 0
6 50 52 4 8 12 14 0
7 5 9 15 0 0 C 0
8 6 o0 16 0 3 o 39 7 11 17 0 0 0

10 8 12 18 0 0 0 0
11 49 51 3 5 9 C 0
12 9 51 4 6 10 0 9
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TABLE 4--Continued It

Node Nodes Connected To

13 53 5 15 19 52 0 0
14 53 6 16 20 52 0 0
15 7 13 17 21 0 0 0
16 8 14 18 22 0 0 0
17 51 9 15 18 23 25 27 I
18 51 10 16 17 24 26 28
19 54 13 21 29 0 0 0
20 54 14 22 30 0 0 0
21 15 19 23 31 0 0 0
22 16 20 24 32 0 0 0
23 17 21 25 33 35 0 0
24 18 22 26 34 36 0 0
25 17 23 27 35 0 0 0
26 18 24 28 36 0 0 0
27 17 25 28 33 0 0 0
28 18 26 27 34 0 0 0
29 54 55 58 19 31 39 56
30 54 55 58 20 32 40 56
31 21 29 33 37 41 0 0
32 22 30 34 38 42 0 0
33 23 31 34 35 37 27 0
34 24 32 33 36 38 28 0
35 25 33 23 0 0 0 0
36 26 34 24 0 0 0 0
37 31 33 38 43 0 0 0
38 32 34 37 44 0 0 0 --

39 58 59 29 41 40 0 0
40 58 59 30 42 39 0 0
41 31 39 43 42 0 0 0
42 32 40 4 41 0 0 0
43 37 41 44 0 0 0 0
44 38 42 43 0 0 0 D

45 46 47 1 2 0 C 0
46 45 48 1 2 0 0 0
47 45 49 1 2 0 0 3
48 46 50 ? 4 0 0 0
49 47 51 3 4 11 12 0
50 48 52 5 0 0 3"

51 49 11 12 17 18 0 0
-52 50 53 5 6 13 14 0
53 52 54 13 14 D 0 0

L.
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TABLE 4--Continued

Node Nodes Connected To

54 53 55 19 20 29 30
55 54 56 29 30 0 0 0
56 55 57 29 30 3 0 0
57 56 58 C 0 0 0 0
52 57 59 29 30 39 4" ""59 58 3i 40 0 0 C.

TABLE 5

COORDINATES OF THE NODES FOR THE MIG 21 AIRCRAFT
(With Respect to Its Center of Gravity and in Feet)

Node x v z

1 30.13 1 .20 0.37
2 30.13 -1.20 J.37
3 17.02 1 .74 -1.43
1 17.0? -1 .74 -1 .-3
5 17.02 1.74 0.lbl
6 17.02 -1.74 0.61
7 11 .50 1.53 -2.51
8 11 .5C -1 .53 -2.51
9 11 .50 1 .98 0.37

10 11 .50 -1 .9F .j71] 1.50 1.53 1.45
12 11.50 -1.5c 1.45
13 8.83 2.70 0.3?
14 8.6. -2,7C C,)715 5.95 0.48 -,9
16 5 .95 -0.4 P -2.12
17 5.95 1.59; -1.49
18 5 .95 -1 .59 -1 .49
19 1.75 2. 19 -u.,720 1 .75 -2.1 Q
21 1 .75 2.19.7
22 1 .75 -2.19 .o1
23 1 .75 1.53 1 .42
24 1 .75 -1 .53 1.42
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TABLE 5--Continued

Node x y z

25 1.75 1.02 3.b5
2 1.75 -1.02 3.85
27 -'4.97 0.48 -2.09

-4.97 -0.48 -2 .09
29 -4.97 1.59 -1.49
30 -4.97 -1.5g -1.49
31 -7.70 12.87 0.37
32 -7.70 -12.87 0.37
33 -9.14 12.87 0.37
34, -9.1 -12.87 0.37
35 -9.14 2 .22 0.37
37 -9.01 -2.22 037
37 -13.01 0.72 -2.00
38 -13 .Of -0.72 -2 .00
39 1 -13.01 1.74 -1.07
40 -13.01 -1 .74 -1.C7
41 -13.01 2.01 0 .[,7
42 -1 3.01 -2 .01 0.3 -

43 -13.01 1.74 1.4?
44 -13.01 -1 .74 1 .,2
45 -I,5.58 1.62 0.37
4b -16.58 -1.62 3.37
47 -20.00 6.21 0.37
468 -23.00 -6.21 0.37
49 -18.92 6.54 0.37
50 -18.92 -6.54 0.37
51 -23.27 6.54 0.37
52 -23.27 -6.54 G,. 37
53 -19.97 1 .50 0.37
54 -19.97 -1. 5 0.37
55 30.91 -0.00 D.37
56 30.13 -0.00 1.57
57 17.05 -0.00 -2.39
58 13.69 -0.00 -3.95
59 5.95 -0.00 -2.15
60 I -4.97 -0.00 -2.15
bl -9.56 -0.00 -3.20
b2 -19.76 -0.0C -7.46
63 -24.68 -(J.00 -7.46
b4 -19.10 -0.0c -1 .22
5 19.97 -0.00 -1 .07

66 -19.97 -0.0c 1.69
o7 -9.17 -0.00 3.55

I
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TABLE 5--Continued

Node x v z 1
o8 -7.88 -0.00 2.32

b9 1 .75 -0.00 2.32
70 1.75 -0.30 3.01
71 -6.32 -0.00 3.85
72 1.75 -0.00 4.69

73 11.59 -0.00 3.85
74 11.50 -U.00 2.32
75 17.02 -0.OC 1.90
76 27.13 -0.00 -0.65 .

7733 .13 -0.00 2 .32
78 28.63 -0.00 -0.35
79 30.13 -0.00

TABLE 6

CONNECTION MATRIX FOR THE MIG 21 AIRCRAFT

Node Nodes Connercted To

1 55 56 79 3 5 0 0
2 55 56 79 4 6 0 0

57 1 5 7 0 0 0
4 57 2 6 8 0 0 0
5 75 1 3 9 11 0 C
6 75 2 4 10 12 0 0
7 58 3 9 15 0 0 0
8 58 4 10 16 0 0 0
9 5 7 11 13 17 A i

10 6 8 12 14 18 20 22
11 74 5 9 23 0 0 c
12 74 6 10 24 0 0 C
13 9 19 21 31 3 0 0
14 10 20 22 32 0 0 0
15 59 7 17 27 0 0 0
16 59 8 18 28 G 0 0
17 9 15 19 29 0 0 0
IB 10 16 20 30 3 0 3
19 9 13 17 31 35 0 C
20 10 14 18 32 36 0

---- A ~.- -
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TABLE €--Continued

Node Nodes Connected To

21 9 13 23 31 35 0 0

22 10 14 24 32 36 C 0

23 b9 11 21 43 0 0 0

24 69 12 22 4 4 0 0 0

25 70 71 72 73 0 0 0

26 70 71 72 73 0 0 0

27 60 15 29 37 0 0 0

28 60 16 30 38 0 0 0

29 17 27 35 39 0 0 0
30 1e 28 36 40 0 0 0

31 13 19 21 35 0 0 0

32 14 20 22 34 0 0 3

33 31 35 0 0 0 0 0
34 32 36 0 0 0 0 0

35 19 21 29 33 39 '41 43

36 20 22 30 34 40 42 44

37 61 62 64 27 39 0 C

38 61 62 64 28 40 0 0

39 64 b5 29 35 37 41 53

40 64 65 30 36 38 42 54

41 35 39 43 45 47 0 0

42 36 40 44 46 48 0 0

43 66 68 23 35 41 53 0

44 66 68 24 36 42 54 0

45 41 53 0 0 0 0 0

46 42 54 0 0 0 0 0

47 41 49 51 0 0 0 0

48 42 50 52 0 0 0 0

49 47 51 0 0 0 0 0

50 48 52 0 0 C 0 0

51 47 49 33 0 0 0 0

52 48 50 54 0 0 0 0

53 65 66 39 43 45 51 0

54 b5 66 40 44 46 52 0

55 56 79 1 2 0 0 0

56 55 57 1 2 0 0 0

57 56 58 3 4 0 0 0

5e 57 59 7 8 0 0 0

59 58 60 15 16 0 C 0

b0 59 61 27 48 0 0 0

bl 60 62 37 38 0 0 0

62 b1 63 37 38 0 0 0

b3 F2 64 C 0 0 0 0
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TABLE 6--Continued

Node Nodes Connected To

64 63 65 37 38 39 40 0
65 64 39 40 53 54 0 0
b6 67 68 43 4& 53 54 0
o7 66 68 0 0 0 0 0
68 66 67 69 43 44 0 0
69 be 74 23 24 0 C 0
70 71 73 25 26 0 0
71 70 72 25 26 0 0 0
72 71 73 25 26 0 ) 0
73 70 72 25 26 0 0 0
74 69 75 11 12 0 C 0
75 74 76 5 6 0 0
76 75 77 78 0 0 0 0
77 76 78 0 0 0 0 0
78 76 77 79 0 0 0 3
79 55 78 1 2 0 0 0

4.3 Generation of Data Points

It is desired to represent the given silhouette of a certain

object by some finite number of points called data points. These data

points are used for the calculation of moments for the given silhouette.

The most realistic situation about the existence of these data points

is perhaps to have them uniformly distributed along the silhouette or

the boundary of the optical image. The subroutine that generated these

data points is called DATA.

Let UVLE be the distance between any 1wo adjacent data points on

the silhouette or the boundary. The number of data points generated

for a given silhouette is inversely proportional to the distance UVLE;

and therefoie as the distance UVLE is decreased, the computation time
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required fcr the moment calculations in increased. However, by de-

c-'easing the distaice VI'LE, one can obtain a more faithful discrete

representation of the Aiven continuous silhouette. A compromise for

the value of UVLE, on the basis of the computation time and the

accuracy desired, is made.

For a certain given silhouette, the variation in the values of

the parameter 03 of Eq. (3-32) with the distance UVLE i shown in

Figure 4.1. The parameter 03 varies considerably for values of UVLE

greater than 0.0003 inch and remains nearly constant for values of

UVLE less than 0.0003 inch. This shows that for values of UVLE for

which any of the parameters o1, P2' 031 04 or p, remain nearly constant,

we have a comparatively more exact and fair representation of the given

continuous silhouette. A compromise, on the basis of the computer core

available, the computation time and the accuracy desired, is made for

UVLE equal to 0.0002 inch.

.30

.29

0 0.0002 0.0004 0.001 0.002 UVLE

Figure 4.1 Variation of the Parameter o- with UVLE
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4.4 Moment Invariance with the Anple of Elevation

It was shown in Chapter III that the vector p * (oi, P2, 03$

04, o5 ), where the parameters 1, 02 03, 04 and 05 are functions of

moments which are invariant with the elevation angle 8 and the distance

B along the optical axis, characterizes a silhouette with given azimuth

and roll angles. The invariance of one of these five parameters, 01,

with the elevation angle is shown in Table VII. Similar results hold

for the other parameters also.

TABLE 7

VARIATION OF THE PARAMETER oI WITH THE ELEVATION ANGLE
AIRCRAFT: MIRAGE, B - 7000 ft,, - 10, * 200

A-C A -C A-C
in degrees 0 ft. -50 ft. -100 ft.

-90.0 0.8158 C.8142 2.8142
-75.0 0.8158 C.8142 0.8142
-60.0 0.8158 O.14b 0.8146
-45.0 0.8158 0.8153 3.8153
-30.0 0.815e 0.8158 0.8158
-15.0 0.6158 0.8166 0.8166

0.0 0.8158 0.8171 0.8171
15.0 0.8158 0.8175 0.8175
30.0 0.8158 0.8177 0 .8177
45.0 0.8158 0.8179 .8179
60.0 0.b158 0.8183 0.8183
75.0 0.8158 0.8182 0.8182
90.0 C.8158 0.8182 0.5180

It is seen from Table VII that the value of the parameter n, does

not vary with the elevation angle 8 for the case when the center of

gravity oi the object to be identified lies on the optical axis. For

the other two cases vhere the center of gravity is off the optical axis,

L
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there is a slight variation of less than 1% in the value of thq

parameter ol. For the present case, it is reasonable to assume the

maximum value of the off-axis distances A And C to be about 30 ft. only,

as for values greater than this the aircraft, with our present consiA-

erations, will not be completely in view. This is sh-wn in Figure 4.2

where the silhouette is generated for the off-axis d!. :ices A and C

equal to 25 ft., and the optical axis distance B equal to 10,000 ft.

This maximum value for the off-axis distances A and C will obviously

decrease when smaller optical axis distances are considered.

4.5 Moment Invariance with Distance Along the Optical Axis

It was stated in the last chapter that the radius of gyration of

the optical image or the silhouette is inversely proportional to the

distance of the object along the optical axis, and hence the I"roduct RK

of the radius of gyration and the distance along the optical axis re-

mains constant. This is shown to be valid from the computational re-

sults shown in Table VIII. -

The fact that the product RK remains nearly invariant with the

distance along the optical axis wis used in Chapter III to normalize

some of the moment functions to obtain their invariance in relation to [j
the distance along the optical axis. The variation of one of the

parameters o.. with the distance B is shown in Table IX.

4.6 Sample Set Construction

A simulation program which appears in Appendix I is used to gen-

erate the silhouette of an object, given its three translational and

three rotational parameters. The possible range of variation of the
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Figure 4.2 Perspective View of Phantom wit~h Off-Axis

Distances A =C - 25 ft., B =10000 ft., 5'- 0,~ 750, 0 100
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TABLE 8I

VARIATION OF RK (u20 + u0 2 ) B WITH DISTANCE B

AIRCRAFT: PHANTOM, - 50, , " 750 , O 100 T

B A-C A-C A-C

in feet -0 ft. -10 ft. =20 ft.

5000 .0 2738 .8 2738.4 2737 .9

5500.0 2739.9 2739.4 2738.7

6000.0 2740.2 2 -13'0. 9 2739.2

6500 .0 2739.2 274U .0 2739.9

7000.0 2740.0 2739.6 274L.0

7500.0 2739.1 2740.2 274C.3

8000.0 2740.2 2739.8 2739.6
8500.0 2740.6 2743 .3 2740.3

9000.0 2739.1 2739.1 2738.2

9500.0 2739.2 273b.9 2738.7
10000.0 2740.7 2740.4 274C.2 --

10500.0 2739.6 2739.4 2739.1
11000.0 2740.3 2740.0 274 .2

11500.0 2741.1 2742.7 2742.5

12000.0 2737.9 2737.7 2737.5

TABLE 9

VARIATION OF THE PARAMETER 04 WITH THE DISTANCE B
AIRCRAFT: PHANTOM, 4s u 5*, * , 750 , 0 100

B A-C A=C A-C
in feet -0 ft. -10 ft. - 20 ft.

5000.0 0.2076 0 .2D77 0 .2u1, tI5500 .0 0.2086 0.2081 0 .2C277 i

6000.0 0.2089 0.2087 0.2083

6500.0 0.2065 0.2068 0.2C71
7000.0 0.2086 0.2085 0.2087
7500.0 0.2082 0.2074 C.2080
8000.0 0.2078 0.2077 0 .2CO
8500.0 0.2073 0.2072 0.2,)77
9030.0 0.2082 0.2J79 0.2079 i
9500.0 0.2065 0.23b4 0.2)64
10000.0 O. 2C95 C .2Q% 0. 2G95
10500.0 0 .2063 0.2063 .2062
11000.0 0.2075 0.2074 h.2081
11500.0 0.2071 0.2074 0 .2673
120I0.0 0.2085 0.2084 .2Ob4

L'
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azimuth angle g and the roll angle 0 are 0 to 360 degrees. But because

of the symmetry of the aircraft about their major axis or the x-axis of

the coordinate system fixed to the center of gravity, the silhouettes

for the four roll angles 4, 180 -4, 180 + and 360 -0 will be almost

similar. Thus we will expect the parameters ol, 02, 03. 04 and 05 to

have nearly the same values for all the four angles mentioned above;

and therefore the same vector p M (Olt 02, 03. 04, 05) will represent

the four silhouettes for these roll angles, with the same azimuth angles.

This is shown in the Figure 4.3.

.6 (a)

.5

i I I .

09 ,8o ISO 1o,8o+ 270 360-0 360
ROLL ANGLE IN DEG.

1b)

Figure 4.3 Representation of the Four Different Roli Angles
having similar Silhouettes

I
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The same considerations apply to the azimuth angle also. Making

use of these svmnetric properties of the roll and azimuth angles, we

may consider the variations of 0 and 4J from 0 to 90 degrees only. The

range of variations of the azimuth and roll angles are discretized at

an interval of 5 degrees each; and then for all of the different combin-

ations of these di3cretized values of the two angles with A and C taken

as zero, silhnuettes are generated from which the parameters o, 02,

03, 04, 05, the constant RK, and the elevation bias error Oe are

computed. Thus the whole sample set consisting of 361 pattern vectors

for each aircraft is constructed. Tables X and XI give the sample set

for the Phantom are Mirage aircraft respectively. The variations for

i and s in these tables appear in steps of 15 degrees, but these tables

were computed in steps of 5 degree variations.

4.7 Identification and Estimation of the Parameters

The Nearest Neighbor Rule described in Chapter III is used for

the identification and estimation of the three translational and the

three rotational parameters. The sample set (, r 1 ), (2) n2) ...

6" n T) is stored in the computer; and then for an unknown pattern J_

vector 0, its nearest neighbor defined in Eq. (3-35) is searched. This

is done by using the subroutine ESTM, given in Appendix I.

4.7.1 Identification of the Unknown Object

Let the nearest neighbor of the unknown pattern vector o be

( '). We may therefore say that - belongs to n'. The information

contained in n' is the class of the object, the azimuth and roll angles, I! I
i
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the constant RK and the elevation bias error Be. Thus the class of the

object, or the aircraft type in our present case, obtained from n' does

the required identification. We define a new term certainty of identi-

fication as

CER - D2/(D 1 + D2 ) (4-1)

where

D1 . distance of uaknown pattern vector
from its nearest neighbor of the
class identified

D2 - distance of unknown pattern vector
from its nearest neighbor of the
ether class.

4.7.2 Estimation of the Translational and
Rotational Parameters

Information about the azimuth and roll angles, the constant RK

and the elevation bias error e5 is obtained from n', and is used to

estimate the six parameters.

The values of the azimuth and roll angles obtained from n' are

only approximate estimates for the two angles. A technique using linear

interpolation is then used to generate 102 new pattern vectors of some

known azimuth and roll angles around the nearest neighbor (o', n').

Let WE and 0E be the azimuth and roll angles obtained from f'. The

closest 8 neighbors of 0' from the sample set are the pattern vectors

with the azimuth and roll angles as shown below in Figure 4.4. UsinQ

these 8 neighbors of r', we can venerate 102 new pattern vectors for
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the variation in steps of 1 degree each In the values cl the azimuth

and roll angles. This is accomplished by interpolating the values of

oi, r2, 031 04 and c5 senaratelv for all the new positions shown in

Figure 4.3 by using the above mentioned 8 neighbors. This is done by

the INTP subroutine. The Nearest Neighbor Rule is then used aqain to

find the closest match for the unknown vector from the newiv gener-

ated pattern vectors. Thus from this closest match found, we extract

estimates for the azimuth and roll angles accura:e up to I degree in

noiseless cases.

The estimate for the distance of the unknown object along the

optical axis is as shown below:

BE - RKE/r (4-2)

where RKE is the value of the constant RK obtained from n', and r is

the radius of gyration of the silhouette of the unknown object to he

identified.

The inclination em of the major axis of the ellipse fitted to

the pattern can be found from Ea. (3-28), which appears below

tan 26m - -2ull/(u 20 - u0 2)

and,

U 2u 2 0 > u 0 2 .(4-3)
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The elevation bias error 0e for the unknown pattern vector is obtained

from n', and therefore the estimate eE for the elevation angle is

given by I
OE e, + 0e (4-4)

For the purpose of estimating the values of the off-axis J
distances A and C, we assume that the center of gravity of the unknown

object is projected very near the centroid of its silhouette in the

image plane. Therefore, from Eqs. (3-1) and (3-2), we have,

AE XCG =UC (BE + )/f (4-5) ]

CE - YCG - VCG (BE + f)/f (4-6) T

where (UcG, VCG) is the centroid of the silhouette, BE is the estimate

for the distance along the optical axis and f is the focal length of Ii
the optical system. Thus we have been able to estimate the three trans-

lational and the three rotational parameters of the unknown object. jj
4.7.3 Results of Identification and Estimation

in the Absence of Noise

Several silhouettes were generated with known reference trans-

lational and rotational parameters, and the pattern vector p a (DI, 02P i

03t 041 D5) was computed for each of the silhouettes. With the help of

these pattern vectors, the identification and estima..ion was achieved.
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Results of some of the identifications and estimitions appear in Table

XII.

It is seen from the results of Table XII, that the accuracy of

the estimation of parameters is as shown below in Table XIII.

TABLE 13

ACCURACY OF ESTIMATION OF THE PARAMETERS

Parameters Accurac,

Azimuth Angle ±1 degree
Roll Angle ±1 degree
Elevation Angle ±0.1 degree
Distance B 2 percent
Distance A ±2.0 feet
Distance C ±2.0 feet

It is to be noted from Table XII that the certainty of identi-

fication was always found to be very hiph, and from this we can infer

that the clusters formed by the pattern vectors of each aircraft are

nonoverlappine or separate.

4.7.4 Results of Identificatien and Estimation
in the Presence of Noise

In a realistic system one would expect that the measurement

points would not exactly overlay the boundary of the pattern from

which they came. This error may be due to several different reasons.

For instance, if the field of view has bern slightly clouded over, or

defocused, then the boundary of the pattern is no longer precise and

the exact coordinates of points ivinR on the boundary can only he esti-

mated. Even if the field of view is clear there is still the

ILL

--- Ai~
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possibility that the electronic equipment associated with the optical

syetem can commit errors, be they internal or transmission errors.

Furthermore, there is always the quantization error associated with

analog to digital conversion. All of these errors may be considered

as forms of noise.

A simulated silhouette for certain reference parameters for the

Mirage appears in Figure 4.5 with a certain amount ot noise added to

the data points. The identification and estimation for this simulated

silhouette is shown below in Table XIV.

TABLE 14

IDENTIFICATION AND ESTIMATION IN THE PRESENCE OF NOISE
(Aircraft Considered: Mirage, Aircraft was Identified to be Mirage)

Parameters RcetrenP Value lstzm.E ,.- Value

Noise 3.4% --

A 8.0 feet 7.7 feet

C 12.0 feet 12.0 feet

B 5500 feet 5496 feet

130 14*

e -40.0* -40.1

CER -- 100%



' I

74

I
I

| -

-- I

Figure 4.5 Perspective View of Mirape ,ith A = 8 ft.,
B = 5550 ft., C - 12 ft., 4 3- 3% 13% 6 - -40.00 '

ana with a noise of 3.4% added to the daia uoints
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Simulated silhouettes for certain reference parameters for the

Phantom aircraft with different amounts of noise added appear in Figure

4.6 through 4.10. The identification and estimation for all these sim-

ulated silhouettes appear in Table 15. It should again be noted that

the identification of the aircraft type was done correctly even in the

presence of noise, and therefore showing the presence of noncoierlanning

clusters foried by the pattern vectors of each aircraft.
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Figure 4.6 Perspective View of Phantom with A - 10 ft.,
H - 7500 ft., C - 12 ft., 0b - 7*, 0 - 220, 5 -, 180, and
with a noise of 0.0% added to the data points
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Figure 4.7 Perspective View of Phantom with A - 10 ft.,

B 7500 ft., C -12 ft., 4, - 7*, $ 220, e - 13V', and

with a noise of 2.2% added to the data points
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Figure 4.8 Perspective View of Phantom with A - 10 ft.,

B - 7500 ft., C m 12 ft., s = 7o, * - 22° , 0 18° , and

with a noise of 4.8% added to the data points

UI
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Figure 4.9 Perspective View of Phantom with A =10 fc.,
3 - 7500 ft. , C - 12 ft. , i - 70, * - 220, 8 = 180 , anc.
with a noise of 7.6% added to the data noints
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Figure 4.10 Perspective View of Phantom with A 1 10 ft., -

B - 7500 ft., C - 12 ft., p - 70* a- 22, 6 u 18, and

with a noise of 10.0% added to the data points I

I
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TABLE 15

IVENTIFICATION AND ESTIMATION IN THE PRESENCE OF NOISE
AIRCRAFT CONSIDFRED: PHANTOM

REFERENCE PARAMETERS: A - 10 FEET, B = 7500 FEET, C - 12 FEET,
, = 7*, s - 22° , 6 - 180

(Aircraft was always identified to be Phantom)

Noise Estimated Parameters
A B C f, 0 CER

O.OZ 8.6 7468 12.3 8 22 18.1 77.8

2.2% 8.5 7459 22.0 7 22 18.1 82.8

4.8% 8.6 7512 12.4 5 23 18.3 86.4

7.6% 8.6 7474 12.4 7 22 18.1 81.9

10.0% 8.7 7479 12.3 2 24 18.2 94.6
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CHAPTER V

SUMMARY AND CONCLUSIONS I

This thesis is aimed at a solution to the problem of real time

identification of three dimensional objects from their optical images.

The approach taken here relies upon the invariant functions of moments

which are used for the construction of the sample set.

The method of moments appears to work quite well for the identi-

fication of aircraft from their optical images. The results obtained

in Chapter IV show that the performance of the method of moments for

aircraft identification is comparable to that of a human photo inter-

preter, and it is roughly equivalent to or better than heuristic tech-

I niques. Failure to surpass the performance o a human is not always a

serious liability, however. In many situations, automation is re-

quired, even if the resulting performance is not as good as that of a

human. When automation is required, the method of moments is quite

possibly the best method, because it is easier to implement than the

other heuristic techniques, which require point-by-point image analysis. T

So far as is known to the author, no alternative image pro-

cessing technique exists with a capability of real time identification

and estimation of parameters of three dimensional objects. The

algorithm developed in this research has the potential of reaching real

time identification when a special purpose computer with multiprocessing

82
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capabilities is used to do the requisite searches. An associative

memory could also be used to store the sample set in order to de-

crease the identification time required.

While all of the results contained in this thesis relate to

three different aircraft that were considered, it appears that this

approach would be applicable for a larger number of objects as well.

Further work in the following areas could lead to better accuracy in

estimation of the parameters and in reduction of the limitations of

the present method:

(1) An optimum distance function for use in the Nearest Neighbor

Rule described in Chapter III.

(2) Linear separatibility for dividing the sample set into dif-

ferent regions or classes.

(3) Syntactic analysis to resolve the ambiguities between certain
roll angles and azimuth angles such as between and -4, q and -4 or the

nose and the tail of the aircraft.

(4) Design of a system to gather data, for use in moment cal-

culations, from the optical image of an object.
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D I E\SI J N
CLib).CF6)MCO(0,7).UU(3OO0),VD(3300)I

DlMkEsSIJ2N UBND(bO).VbND(6OI .
DIMENSIUN RM6(I,1) ,RK(I,1).

PEAD~b. 1001) F,RPAT,UVLE ,NPAF..NOP
1001 FORkiAT( Fb.19F1O.2,F5.1.213)

READ(b.1002) (P(I) U( I) ,R( II *I,NOP)
I )O02 FOR'4AT(3F9.4)

REAi)(6,10O33) C3(1),CS(2),CO(3)
1003 FORMAT(3F*7.1)

100b FORIAT(713)
CALL RELEAS (6)
F z12 .
UV LEzO .0002
TYPE 600

6~00 FORM AT( PLEASE TYPE DEC TAPE NO. IN FORMAT 11 ')
READ(5.8886) IU

8886 FORMAT(I1I
I u t I U +B
TYPE 2211

2211 FORMAT(' ENTER AIRCRAFT CODE 1)
READ( 5.2213) PLANE

2213 FORMAT(F2.0)
TYPE b03

603 FORMAT(' ENTER CO-ORDINATES X,ZY IN FORMAT
2 1 S .1 x3

I I.F8 .1)
READ(5*604) C0(1) ,CO(3),CO(2)

TYPE 601
b01 FORMAT( ' ENTER ROLLASYMTH ELEVATION ANGLES !N

13 ( F 5 . I1 .1) A
REAU(5.602) (014) ,C045) ,CO(6)

602 F3R4AT(3(FS.1.lxI I
TYPE 605

bC5 FOR*MAT(' ENTER SD IN FORMAT F6.~4
REAO(5.b0b) SD

bCb FO0R 4A T (F 6.14
I YPE 1245
READ(5924b8) IlFN

2468 FORMAT(A3)
1245 FCRMATI' ENTER FILE NAME AS ~*'1

CALL GFILE( IL,.IFN)
wRITE(IU.4419) PLANE

4.419 F 0R 4A I( E15 .7)



WRITE(IU*4419) F 8
WRITE(IU*4420) (CO(1),I:1.6)

'420 FORMAT(6E15.7)
(0(b) :;CC' (6) +180.

CALL RELEAS (5)
Do 2025 Irl,NOP

R(I) =01 I'D.72

2025 CONTINUE
XSUM=0.
YSUM:3.
ZSUM=D.
DO 20 l=1,NGP
XSUM=XSUM+P( I)
YSUMXYSUPM+Q(I)
ZSUM=ZSJM+R(lI

20 CONTINUE
DO 21 I=ltNLJP
P(I)=P(I)-(XSU4/NOP)

R(IVUK(I)-(YSUM/NOP)

21 CONTINUE
95 1IA= 1
510 IB~1

CALL DATA (CO,P,QRFNO)PNPARtC0NoUVLE,UD,
I VD. I.S?1 SD,AM .SPAT .KM .UBND.VBND.,ANOSE)
TYPE 7359ISP1

735 FORMAT( ' IS~lz ',15)

WRITE U -112) ANOSE
712 FORMAT(E15.7)

WRITE(IU,716) KM
716 FDRMAT(15)

WRITE(IU,720) (UBND(IkVBND(P,I=1,KM)
720 FORMAT(2E15.7)

USUm~O.
VSUM :Q.
DO 10 IlltSPI
USUI4:USUM+UD( I)

10 VSUM=VSkUM+Vo( I)
UCC,:USUM/I SP 1
VCG=VSUM/ISPI
WRITE (IU,782) 'CG,VCG

782 FORMAT(2E15.7)
DO 11 I=1.ISP1
UD( I )UD( I)-UCG

11 VD( I )=V)( ! )-VCC,
U20=0.
UU2=0.
U 30 =0 .
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U03= *J*

U 12 1 0.

uD2=UO?+VD(I1 2.
U12zUl2+UDH i I*VD( I )*VJI)
U21:U21+uo( I )Ui~I )*VD(I)
UIL'11l*UO( I!*~VD( I)
U03=u334VD( I) 063.

iC U3OzU30+UOV)*3.
U32 -UOV/ISP 1
U2C=U20/15IS~
u3C~u3D/ 1501

U21=U21 /I SP I
U12=UI2/ ISPI
U033=U3/15IS1
FKM1( Av,16)=U20+Lj02

R43 (lA.IB)z(U20-3.,U12)*2.,3.*l*U21UO)*

RM5( IA. 18)=: M(U 0-A,12I/( U304.U1) (U0U1
I 3(J1.'JCI33~.)*( )**3.OU21-UU13)*

.RSM3IA,IB)1(RM3(IA.18)**~(4./12.))/(RG**4.)
RM46IA1A.)=CU30*Ul2)0*2((33,U12)02.(2,O)C.

RM6H4(A.IB)=(RMb(IAtIB)**4./.)/(RGO*4.)
U:5(2.I18)/(UO2-U2*012)(3+l)(U0U2*

VOD= ( 2 *J11) /5 I( C2b)+ IhC 1iCb

U2 J20P 000

u0?PzU02P+Vb0**2.
1264 CONTINUE

F(U20P.GE.(JO2P) CTO1276
!F (CO6.GT.D,) GO TO 1278
CJ6=CL)6+90.
G - TC 1276
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1278 C06=C36-90.
1276 C 06--C 06

DRT:! SPI/150..
1 -

I SPIN= INT ( RT
I MX=0
00 1330 i=iISPI,lSPIN
I m xz Imx +l1

13JO CONTINUE
WRITE(IU.130

7 ) IMX

co 15(b2 I= 1,1SP I, ISPI1'4
U4 I) =U;) I I *UCG
v0u I!VU( 13 +4VCG

1562 CONTINUE

1303 FOR"MAT 2F5.7)

1307 FORMAT ( 15)

X2=RM3( LA,18)
X3=RM4( I A ,I6)
X4=RM5( I A~ , 81
X5=RMbH(A,!IBl
WRITE(]U,1298) XlX2,X3,X4tX5

1298 FORMAT 5EI5.7)
WRITE(IU,1O'98) CC,6,RG

1096 FGRMATf2El5.7)
TYPE 1 198#X1 ,X2.X3,X4 ,X5

1198 FORMAT (5(2YF7.4))
TYPE 1398,C06,RG

1398 FORMAT (2X,.F5.*1 ,4X, FB.4)

864 CALL RE LEAS (IUI
STOP
E ND

SUBROUTINE DATA(C ,P,Q,R,F,NCPNPARMCQNUVLEUD,

I VO. 9ISPLSODA4,s PAT oKMgUBND.VBND ANOSE)
DIMENS ION

Ctb),P(80).MCON(80.7),UBNC(60),VBND(60),
1 UD(3000) ,VD(3)O0),IPN(50),QI80),R(80)
CJMMON ,KMMviUB(6O),1V8(bO)
CALL PRDT(CP,.RF ,NUP,NPARMCON,UBNU,

1 VBN4D,KK)
D0 7 Iz1,KM

VBm(VBNO(I141)-V8ND( I) )**2.

O)ST = SQRT ( Ut+VB)
PNLDOSTI1/UVL E

IPN(I )=I!JTIPN)
PQzPN-IPN( I)
IF fPC.LT.0.5) GO TO 1



IPNt j ): PN( I ).

I F P N I I.1) E.01 G

2 0iJ=(UBN0( IG1)-UBNL(I))/IPNI I)

I F(1E Q. I) G C TO ' 4

DO 3 11=1.1-1
3 1 ISP I SPtIpN( II I

GO T0 5

4 15 p =0

DO b 11=1,IPNI

6 VY]A)=VBNDH)+(11-1)4DV
7 CONTINUE

DU I . K M

15I -SP 14*1PN 11)
8 CONTINUE

ALNMX=-100.
ALNMN=100.

00 1752 I=1.YM
IF (ALNMX.GE.UBND(I)) GO 10 1755
ALNMX=UBNU( II

1755 IF (ALNMN.LE.UBN0(IH) GO 10O1752
ALNMN=UBND( I

1752 CONTINUE
AL1=ALNMX-ALNMN
ALNMX=-100.
ALNMN=10.
00 1758 I=1,KM
IF (ALNMX.GE.Vb%01I I) GO TO 1759
AL?.IMX=VBND( I1I

1759 IF (ALNMN.LE VBI.D( 1 1) GO TO) 1758
ALNMN=VBND( I)

1"15 8 CONT INUE
AL2z ALNMX-AL NMN
TYPE 175 1 ,AL 1AL2

1751 FJRMAI (2F6 .4)
AL: (ALI+AL2)/2.

DO 2147 I-l. I 5PI
CALL 6.AU5S(S[D,A-M,VZ ,SPAT)
UD( I UD( M)VZ
IF (VZMZX.GE.VZI GO TG 2147
VIMAX=VZ

2147 CCJNT INUE

L1
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CALL CAJ5SS AMVZ#SPAT)
VL)( I IVL)( I iVZ
IF IVZMAx.GE.vZ) GO0 TO 2154
V ZNAX Vi

Z154 C(6NTIUE
AN0SE =VZyAX *1OO./AL
TYPE 1767,ANOSE
TYPE 17b7.VZMAX

17b7 FORMAT ( F5.7)
RET U RN

SUBROUT INE PROT(DPQ.RFNOPNPAR,MCON.UBNDI
1 VBtND.KM)
DIM'ENSION DC61,P (80) ,MCON(80,7),U(125),V(125)9

I TA(500) .TAI(500) ,UINT1(2O) ,VIN-1l(20).UINT2(20),
2 VINT2(20)tL(20) ,LL(20),MKR(20),DI! (2O)901(20),
3 MKRI(C(20),MKRII(20),UB'ND(60),VBNO(bQ),TAij(60),
4 MCON1(125,9).JKA(1O),Q(80) ,R(80)
01:COSO(0(4))
02=51ND(D(4))
D3=COSD( 0(5)
Dg.:SIND(D( 5))
D5zCO.SO(D(6))
D6=SIND(0(6))

011:05*03
Dl 2z-05*O4*D1+D6*D2
Dl 3-05OD4#D2+D6*Dl
021=D4
D22zD300 1
023: -03 4D2
031 =-Db*D3
032=Db*04@D 1+0D02
D33=-D64D4*D2+D5*D1
D0 4.1 I:1,NOP
PX:P(I)*DllQ(I)ci)12+R(I)QD[2,D(l)
QYtP(I) *021.Q( I) D22+R( I) D3+D( 2)
Ri :P( 1) D3 14011) *)32R(H 0033+0(3)

VI I)=FORZ/(FsOY)
41 CONTINUE

UMAX=U( 1)
JK~ I
DO I 1=2.NOP
iF(JMAX.GE.U(1)) GO TO 1



UMAX= LJ I I

(ONT INUE

VBNU( 1) V(J (
T AD( 1) 31 1415
K I=

JKDO

NOP 1 NOP* j

Do o0 11=1O97

60 mCONi Ijj7 C I

DO 51 I=NOP1,125

61 00 61 1 1=1 .9

DO 62 i=1.NOP

DO 62 1 1 8 09

2 JN1:0
DO 10 :. N 1

IF(I.EQ.JK.OR.I.EU.JKD) GO, TC 9I

IF(MCON1(JK.,J).EQ.I) GO TO 401

400 CONTINUE

GO TO 9

XX=(V( I)-VCJK)l/(U( i)-U(JK))
TA( I)=ATANI XX)
I F ( (I1).LT.U(JKI) GC TO7

I F IV ( ).LT.V(JKfl GO TO 8

GO TO 10 1 j
3 IHVCI)-V(JK)) 4,5,6

4 TA I)=4.7123
GO TO 10

5 TAfl~z20.0

JKA(JNI )=1
GO TO 10

6 TA( I )=i .5707
GO TC 10

7 TA( I )TA(I )+3.1415

Go TO 10
E TAC 1)zTA( I).6.2831

GO TC 10
9 T A ( I)20 .0
10 CUNTINUE

CC 13 1 =1,Nl
TAI(I)zTA(I)-TAD(Kfl3.j4j5

I F ( TAH1I) *LI .0.0) GL TO 11
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IF(TAI(t).GE.b. 831) GO TO 12

IiGO TO 13
11 TAI (I)=TA1 (I )+b.2831

G3 TO 13
12 TAI( I I)TAI ( 1 )-6 .26311
13 CONT INUE

TAM=T A (1)
JN: 1
DDJ 14 1 =2 Nl
I F ITAM.LE .TA1IH £IG TO 14
TAII=TA1(l I
JNz I

14 CONTINUE
TAD( K.z I =TA( JN I
N2=N 1-i
KCLM=0
DO 26 1=1.N2
KCL=O
IF(I.EQ.JK.0R.I.EQ.JN) V'O TO 26
00 24 11=2,Nl
IF(II.EQ.JK.OR.1I.EQ.JN) GC TU 24
IF(I1.LE.11 GO TO 24
DO 500 J=1,9
1F(MC0N1(1.J)E..1I) GO TO 600

500 CONTINUE
GO TO 24

600 A1=U(l)-U(II)
A2=J( JN)-U( JK)

B2=V(IJN -V (JK I
AX=A1O32-A2*61
hBSAX=A8S( AX

IF(A8SAX.LE.1.0E-6) GO TO 24

8=1 A10(V(JN)-V( I) )-(U(JN) -J(il )oBl)/Ax
AL 1=1.00000001
AL2=0.99999999

EPS2=0.00000001
IF(A.GT.AL1.OR.B.CIT.AL1) GO TO 24
IF(A.LT.EPS1.OR.8.LTr.EPS1) GO TO 24
IF (A.LE.-EPS2.AND.A.GE.EPS1 ) CE TO 17
IF(A.LE.ALl.AND.A.GE.AL2) GO TO 18
6O TO 19

17 IF (B.GE.EPSI AND .8.LE.EPSZ) GO Tr- 24
IF(B.(,E.AL2.AND.B.LE.AL1I GO TO 24
K CL= K CL + I
LI K KCL I =
UiNT1( KCL)=U( II)

VINT1 KCLIV(1I



6b TO 23
18 IF(B.6E. EPSI.AND.B.LE.EPS2) GO Tbi 24

IF(B.GE.AL2.AND.B.LE.ALl) GuD TC 24
tKCL-KCL+l
L ( KC L
UINTI(KCL)=J( 1)
VINTI CKCL)=V( I
GO TO 23

19 IF(B.GE.EP51.ANO.8.LE.EPS2) GO TO 20
IF(B.GE.AL2.AN0.B.LE.ALl) GO 10 21
KCL=KCL+l
L( KCL ) 3
UINT1(KCL)=A*J(1I 1+I .-A)*U01II)

GO TO 23

L ( KCL)= ~4
U I NT I (KCL )=j( JN)
V iNT 1 KCL.) V( JN)
GO TO 23

2i KCL=KCL+1

UINTL(KCL) :U(JKI
VI NT 1(KCL) =V IJI

23 MKR(KCL)zII
AA=U(JK)-UINTI(KCL)
BB=V( JK)-VINTI(KCLI
DII(KCL)=SQRT(AA9,*2.*88B*2.)

24 CONTINUE
IF(KCL.EQ.'I GO TO 26
KCLM=KCLM. 1
MKRKC (KCLM) :1
DI CKCLM) :011(1)

IF(KCL.EQ.1) GO TO 50
00 25 1!=2.KCL
IFIOI(IKCLM).LE.DII(III1)) GO TO 25
O ICKCLM 1=D111111)

25 CDNTINUE
51) MKRI I(KCLM):MKR(J1)

LL(KCLM) :L(JI)
U I'T 21 KC LM)= U NTl1( Ji
VINT2(KCLM)=VINT1(Jl)

26 CONTINUE
IF(KCLM.EQ.O) GO TO 34
DMNZDI(1)

IF(KCLiA.EQ.1) Go9TO 28

DO 27 =2.KCL
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IF(DMN.LE.DI(I)) GO TU 27

OMN Ui ( I)

27 CINTINUE
28 U5NUfl I UINT2(LPA)

VBND(Kl~)=VINT2(LPA)
L M.KRiC (L PA)
Lll=I(RII(LPA)
00 100 J=1,9
IF (MCO1Nl(LIJ).EQ.LII) GO TO20

63 TO 100

GOG TO1 330

100 CONTINUE
30C DO 10 1 J: 1,9

I F( MCZN I( L IJAEQ L I GO T U 201

60 TO 101

231 j 12z j
GO TO 301

101 CONTINUE
301 00 102 J:1.99

!F(MCUN1(JK,J).EQ.JN) GO TO 202

GG TO 132
202 J 13 =J

GO TO 332

102 CONTINUE
302 D0 103 Jzlt9

IFfMCON1JfN.J).EQ.JK) GO TO 203

GO TC 103
203 J 14 =

GO TO 3J)3

103 CONTINUE
303 IF(LLiLPA).EQ.1) GC TO 29

IFIL.L(LPA).EO.2) GC TO 30
IF(LL(LPA).EQ.3) GO TO 31
lF(LL(LPA).EQ.4) GC TU 32

* MCON1 (LI.JI1I=JK
M~CON1 (LII ,J12 ):JK

MCONl(JKt8):LII

GO TO 2

29 MCCN1(JKJI3)=Ll I
ICNI(JNJI4=LI I
MCCN1(LI I.8SJK

jKt:U JK
JKzL I I
G J TOG 33

30 "'CO-N I( JK *J13)=LI
MC0N(JN.Jl4)zLI
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toCON1 (L1,8)=JK

MCO4l(LI *9)rjN

,J K0JK
j KL I
r, ) 10 33

31 N I N I +
MCCNI(JK.JI3)=Nl

MCON I( LI .Ji1) -I1
MCONJ(LI IJ12)=%1
MCON I(NI .1 1-L I

MCDNI(NI .3) :JK

MCC)N I(NI .4)=JN

MCCN1 (NI.,5)zO
MCOI1(Ni .63 :
MCON1 (NI,7h2Q
u(N1 ) UBND(Kl)
V(Nl) =VBND(K1)

JKD=JK
JK=N 1
G0 TO 33

32 MCONI1(Li.ill: JN
MCONI(L1I ,Ji2)=JN

MCONI11JN .8) :L
MCONI(JN,9)=L11
JKD=JK
JK :JN

33 K I =K I +
GO TO 2

34 IF(U(JNI .EQ.UBND(i I AND.V(JN) .EQ.VBND)(1ll

1 GO TO 35
IJBND (KiII=U( JN)

VBNO(K )=V( JN)
JKIO=JK
JK JN
K 1 = K 1I
GO TO 2

35 KMzKl1
UBNU(KM4I) :JBND( 1)
VBNU(KM*1 I=VBND( 1)

RETUR4

suek-JuTINE GAUSS(50,AM*VZ ,SPAT)

DD 50 KAA1.12 
;



YzRAN( SPAT)
531 A=A+Y

VZ =( A-6 *SD5+ AM
RE I JR-N
END

01 ME NS ION
Xl1119,19) ,xl2119.19) .X13( 19,19) ,X14(19,19,

1 x15( 19.19) ,RK1(19,19) ,EB1(19.19)
D I M E NS51 ON

* I X21(19,19).X22(19,19) .X23( 19,19) ,X24( 19.19).
1 X25( 19,19) ,RK2(19,19) ,EB2( 19. 19)
DIMENSION xL(11 .11),x2(11 .1 ) X3(11 .11).
1 X4 (llo I I).X5(11,ll)
0 1 ME NS I0ON CO0(b6
DIMENSION UD(220) ,VD(22O),UBNfD(6O).VBN!D(60)
TYPE 100

100 FORMAT(' ENTER ) C TAPE NC.
* READi5.123) IU

123 FORMAT(II)
IU =I U +8
IF (IJ.NE.17) GO TO~ 140
TYPE 150

150 FORMAT(' LOADING OF MONENT TABLES *)
TYPE 170

170 FORMAT( ' ENTER DEC TAPE %J. '
READ(5.190) IU

190 FORMAT(III

I U 1 U +8
CALL IFILE([U.'PHAN')
DO 610 Izi .19
DO 611 11=1.19
REA1 ( IU.250) AZ.ROX1( 1.11) *X12( 11) .X13( 1,11).
1 X14( 1,11) .Xl5C1,11) ,RKI (1.11),EBI (I * I)

b11 CONTINUE
61 D CONTINUE

CALL RELEAS ( IU)
CALL IFILE ( I U . IMI ik
0] 310 1:1.19
DO 311 11=1.19
REA ( IU.250 I AZ ,QO,X21 (1,11),X22 H,ll, K23( I *il)
1 X24 (I * II) X25 (1,11) RK2(I1 .1),*EB2( 1.11)

311 CONTINUE
310 CONTINUE

CALL RELEAS (1J)
25j FORMAT (2F6.1.7E15.7)
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TYPE 390

390 FORMAT(' END OF LOADING *
REAi)(5,250) END

140 IF (IU.EQ.8) GO TU '420
TYPE 43U

430 FORMAT11 ENTER F ILE NAME AS ~0/
READ(5,450) IFN

450 FORMAT(A3)
CALL IF ILE(IUIFN)
READ(IU,480) PLANEI

480 FORMAT(E1.5.7)
READ(IU10480) F

REAO( 10.5001 (C3( I), 1:1,6)
500 FORMAT(bE15.7)

READ(IU.480) ANOSE
READIIU,530) KM i

530 FORMAT(15)
READ(IU,550) (UBND(I),VBND( 1), kl,KM)

550 FORMAT(2EI5.7) E
READ(IU.550) UCG.VCG
READ( IU.530) ISPI
READIlUt550)(U( V(I).:,S1
READ( 10.600) Y1,Y2 .Y3tY4,Y5

600 FORMAT(5EI5.71 :
READ(lU.5501 C069RG

CALL RELEAS ([U)
420 DMI=1000.

DM42=1000.
TYPE 635tANOSE

635 FORMAT(' NOISE= *F6.1)
TYPE 637tPLANE

637 FORMAT(' AIRCRAFT CODE= IF3.1)
CO( 1):CO(flh1 .
CO 3):CO13 )/12.
CIJ(2):COC 2)/12.
TYPE 1190.COC 1),*COM3
TYPE 1210.CO(2)
TYPE 1230,CO14h.COC5),C3(b)
CALL DIS(UBND.VBND,KM,UD,VD, ISPi)
D0 640 1=1.19
DO 650 11=1.19

1 *(Y3-Al3( 1,11) )0*2.+(Y4-X14( 1,11) )*2.

1 *1Y5-Xl5( 1.11) )**2.
IF (DMl.LE.OR1) GO TO 690

Il +IY3-23 II1)) *2 .+( Y4-x24 (I, I)) '"u2.
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1 (V5-X25( 1,11) )**2
IF (DM2.LE.DR2) GO T6 ('5O

I A 2 1

b5U CUNTI 4UE
643 CONTINUE

IF iDM2.LE.Dm'1) GO TC 82C0

CER=DM2/(DM2+DM1I)

CU=C6Ea( A..l

CO :RK1 (IA1. IRI /RG

CALL IN T P( IA1vIRlvX11,Xl)
CALL INTP( IAl .iR1,X12,X2)

CALL INTP( IA1,IRI ,X13, X3)

CALL INTP( IAl ,lR,Xl4*X4)
CALL INTP(!Al.IR1,Xlb.X5)
GO TO 915

620 CER=DM1/DM1+DM2
PL=2.
CC6=C06-EB21 1A2,1R2)
CG2=RK2(1A2.1R2)/RC
CALL INTP( 1A2.1R2,X21,1)
CALL INTP( 1A2 .1R2,X22,X2)

CALL INTP( IA2.1I.2,X23#X
3 )

CALL INTP( 1A2.1R2,X24,X4)
CALL INTP(I A2 ,IR2 *X25,X5)

915 CERzCER*100.

00 1010) 1:1.11
00c 1020 11:1,11
DU ( Y -X 1(1 .11) 'o2.,( Y2-X2 (I.11)I) t2.

1 iiY 3 -X3(I,11I)'Q2.+(Y4-X4( 1,11)1**2.

1 .1Y5-X5( 1.* 111)1042.
IF IDM.LE.D) GO TO 1020
DM=D

I RD= I I
10? 0 CONTINUE
1010 CONTINUE

COI=UCC,*(F+CG2)/F
C0)3VCG,*(F+CC,2)/F
TYP5- 1122

,122 FU;R'AIC ' ESTIMATED VALUES

IF (PL.,%E.1.J GoTOi1131

C)5:.01A1-1.1'( IADb6.)

TYPE 1355, IA1.IRl, IA~O.1D

1355 F3RmAT(4110)
TYPE 1152,CER



1152 FORMAT(' AIRCRAFT IDENTIF!ED TC BE
PHANTUMCERT A INT Y:

I f5 .1)
GO TO I IbO

1130 CuS 55.*H A2-1.) I (1AD-6.)

TYPE i355.'.A2.IR2, IAD9IR.O
TYPE 116Z*CER

1182 FORMAT(' AIRCRAFT IDENTIFIED TO BE
MIPIAOE ,CERTAINTY= I

1 F5. 1)
116,COI=C1/112.

C03=CO3/12.
C 32:CO 2/12.
TYPE 1190,CU1,CO3

TYPE 1210,CO2

1210 FORMAT(' Yz '.F1O.1)I TYPE 123u,C04.CO59COb
12~30 FORMAT(' ROLL ANG.x ',F5.191 AZiMJTH ANG.= '

I F5.1,' ELEVATION ANG.= 1,F5.1)
STOP
END

SUBROUTINE INTP( IAvIR.XX.T)
DI MENS ION YX(19,19) ,T 13. 11)
A!5=XX (IAIR)
IF (IA.EQ.1I GO0 TUi 30
A 2 zX X( I A- I , IR Ij IF (1k,NE.1) GO TO t40

Ab=XX( IA,IR+1)

GO T. 5 U
4j Al1 = XX ( I A-1 R-1I

A4zXX( IA.)R-1)
I F ( Ik.-NE .19 ) GOTO 60
A3= 1CJO.
Ab= 1000.
A9 = 1000 .
GO0 TO 70

6C A3=XX( IA-i, IR41)
Ab=XX (IA.*I R* 1)
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IF HIA.NE.19) GO TC 80

A 7 103J0.
AS: 100.

t9= 1000.
Go~ TO 500

80 A7=XX(A1,IR1I)
ta:xx (I A+.IR)
A9=XX IA+i, IP+1)
GO TO 500

50 IF (,A.NE.l9) GO TO 100

A8=1000.
A9= 1000.
GU TO 500

IC )A8:-XX (I A+ 1 IR
A9zX C IA+1.1R41I)
GO TO 500

70 IF (lA.NE.19) GO TO 120

A7= 1000.
Ab= 10)0 .
£0 T0 500

120 A7=XX(IA+1,]R-1)
Ab=XXIIA1 .IR)
Go TC 500

30 A I=1000 .
A2= 1000.-
A3=1000.
A8:XX(IA+1 ,IR)
IF (I R.NE .1) GO lii 200
A4z]100.
A7= 1000.
A6=X X %'I A , IR + 1
A9=XX( IA+1.1R*1)
GO To 5'J0

200 if HIf.NE 19) GO TO 300

Ab=1000.
A9: 1000.

A7=AX t IA+1IR-1)

3 iA 4 'X (I A , I R- 1)

Ab=XX( IA.IR+ll
A7=XX IIA+1, IR-1 I
A9:xx( I Ml IR+Il 1IT31.(.)

500 CALL EQPT(AlA4.A7.T(l.
1 ),T(2,1)T31, 41

CALL

E P 1 A3 ,Ab.,A9 , (1.l11 * (2,111 * 13,11).T (4,111,



CALL
EOPT(A?,A5,A6,T(1,6),T(296)tT(3,b),T(4.6),T(5,b)I

1 T(6.6) ,T(7.L) .T(8,b) ,T(9t6) .1(10.6),
1 T (11.6) )
CALL EOPT(T(11) ,T(1,(6)vT(I.11),

1 T( 1.6) .1(1,7) .T(1,8) .1(1,9) 1( 1,10) .1(1,11))
CALL EQPT(4T (2.1), T(2,6), 1(2,11),
1 T(2.1) ,T(2.2) .(2,3) *T( ,4) .1(2,5) .142,6),
1 T(2,7) .1(2,8).T(2,99kT(2,10),T(2,11))
CALL EQPT(T(3.1) .1(3.6) .1(3,11),
1 T(3.1),T(3,2).1(3,3),T(3,41,T(3,5)tT(3,6),
1 T(3,7),1(3,8),T(3,9),T(3.10!),113,11)

CALL EQPT(T(4. 111(4.6) ,T(4o11)
1 1(4,1) ,T(',2),T(4,3),T(4,4),T(4,51 .1(4,6). -

1 T(4,7),T(4,81,T(4,9).1(4,10),T(4,11)I
CALL EQPT(T(5.1).T(5,6) .1(5,11),
I T(S.1).T(5,2),1(5,3),T(5.4),T(5,5),T(5,b).
1 T15,7),T(5,8)tT(5,9),T(5910),T(5,11)I
CALL EOPT(1(6*1).T(6.6) .1(6.11),
1 1(6.1) .1(6,21,1(6,3) ,TI(b,4) 1(6,5), T(6.6),
1 T(697),T(6,8).r(6,9).1(6910),r (6,11))
CALL EQPT(T(7.1),T(7.6) .1(7,11),
1 T(7,1) .147,2) .1(7,3), 1(7,4) .T( 7,5) .(7,6),
1 1(7,7),1(7,8).T(7,9),T(7tlObT(7,11) )
CALL EQPT(T(8.1).T1(8,6) .1(8,11).
1 1(8.1) .148,2) .1(8,3) ,T(8,'. 1,(8,5) .1(6,6).
1 1(8,7) ,T(8,8).1(8,9) .T(8t10),T(8,11) I
CALL EQPT(T(9v1) .1(9,6) .(9,11).
1 T(9,1) .1(9,21.1(9,3) .1(9,4) .1(9,51.1(9.6),

1 (9,7) ,T(9,8) .T(9,9),17(9.1Ou),1(9,11))
CALL EQPT(T( 10,I),T(10,6)r1( 10.11),

T( 10.1) 1( 10.21.14 10,3) .1(10,4) ,T(10,5) .1410.6).
1 1(10.7),.1410,8) ,T( 10.9) ,T(10, 10) .1(10,11)
CALL EQP 1(T1(1,1), 111.61,1(11,11),

1(11,1, .1(11.21,1(11.3) .1(11 ,41,T(11,5),T( 11.6),
I 1(11.7).1(11,8) .1(11,9),14 1.1,14 *11,11)) -

RE T URN'
END

SUBROUTINE EOPT(X1 ,X2,X3.Yl,Y2.Y3,Y4,Y5,Yb,Y7,Y8,
1 y9tY1oYI1)
DI X2-X 1)/5.



D2~ IX3-X 2 /5.

Y 2 y I 1 D1
Y 3 Y 2 +O1
Y~:Y 340 1
Y5 Y44.01
Yb X 2
Y7=Y6+DZ
Y8 =V 74-02
Y9: =Ye +02
y 1 OQY9+ D2
YI 11 =x3
RET UR ii
E ND

SUBROUTINE DIS(UBND,VBND*KM,UD.VD. ISPI)
01IMENS ION UBND(60 ; VBND( 60)
DIMENSION UD(2501,VD(250)
D)IMENS ION A(1000)
UBND(KM+1) =UBNU( 1 )
VBND(KM+1 ) VBND( 1 )
CD=10O0.
COMMON LP, I SHOWXMAXXMIN,YMAX,YMiIN,INTENS,
1 ISCALE
L P z0
I SHOW=O
I NTENS=7
I SCALE=O
KMMzKM4 1

13 00 1 1I:1,KMM
UBN)( I ):CD*UBND( I 11000.
VbNDfHI)CD'VtND(I)14100.

1 CONTINUE
DO b5 IZ1.15P1
UJD( I)=C0*U0( 1)4100.
VDI I) :CD*VD( 1)+1000.

65 CONTINUE
11 CALL INTABIA,1000)

XMAX= 2000.
XMI N:0.
YMtX=2000.
Y MIN=o 0.
CALL POINT(A,UBNO(1).VBND(1fl
I SHjW1
00 2 I1lKM
CALL LINE(AUBNO(I),VBND(1 ),UJBND(I'1) .VBND(1+1fl
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2 CUiNT INUE
CALL PCINT(A*53..5C. I
C A LL L IN E t&.50 ..50.wl95) .,50.)
C AL L L IliE(A-1950.,50.,1950.,91950.)
CALL LI.'iE(!1.1950., 1950. ,50..1950.)
C ALL L I NE (A. 50 . *1950. .,50 .,50 .
0!C- 3 5 1 =lIl59)1
CALL 5POT( A.UU( I) ,VD( I))

35 CUNTINUE
CALL UISPLY11.A)
TYPE 3

3 FORMAT(' TYPE MAG. FACTOR IN FORMAT F4.1 '
READ(5.7) AB

7 FORMAT(F4.1)
15 DO ob I1 ,ISP1

UD I )z(UDC I)-1000. I/CD
F 'D(I)z(VD(I)-100.)/CD

bb CONTINUE
00 3252 I=1.KMM
UBNO ()=4UBND (1)-1000 * / CD
VBN0(I)=(VBND(I)-1O00l.)/CD

3?52 CONTINUE
CD: ABQCD
IF (AB.NE.1,) GO TO 13
RETUR N
END
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